Файл: Характеристики и типы мониторов для персональных компьютеров.(История создания первого монитора ).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 29.06.2023

Просмотров: 57

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1.3 Мониторы LCD характеристики.

Технология LCD мониторов. Жидкокристаллический дисплей (LCD) — это плоскоэкранный дисплей, электрический визуальный дисплей или видеодисплей, использующий модулирующие свет свойства жидких кристаллов (ЖК). ЖК не излучают света напрямую.

Существование жидких кристаллов было установлено очень давно, почти столетие тому назад, а именно в 1888 году.

Первым, кто обнаружил жидкие кристаллы, был авст­рийский ученый-ботаник Рейнитцер. Исследуя новое син­тезированное им вещество холестерилбензоат[6], он обна­ружил, что при температуре 145°С кристаллы этого ве­щества плавятся, образуя мутную сильно рассеивающую свет жидкость. При продолжении нагрева по достижении температуры 179°С жидкость просветляется, т. е. начина­ет вести себя в оптическом отношении, как обычная жидкость, например вода. Неожиданные свойства холе-стерилбензоат обнаруживал в мутной фазе. Рассматри­вая эту фазу под поляризационным микроскопом, Рей­нитцер обнаружил, что она обладает двупреломлением. Это означает, что показатель преломления света, т. е скорость света в этой фазе, зависит от поляризации.

Жидкий кристалл – это специфическое агрегатное со­стояние вещества, в котором оно проявляет одновре­менно свойства кристалла и жидкости. Сразу надо сказать, что далеко не все вещества могут находиться в жидкокристаллическом состоянии. Большинство веществ может быть только в четырёх, всем хорошо известных агрегатных состояниях: твердом или кристаллическом, жидком и газообразном. На самом деле, некоторые органические вещества, обладающие сложными молеку­лами, кроме четырёх названных состояний, могут образовы­вать пятое агрегатное состояние — жидкокристалли­ческое. Это состояние образуется при плавлении кристаллов некоторых веществ. При их плавлении обра­зуется жидкокристаллическая фаза, отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления кристалла до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость. Чем же жидкий кристалл отличается от жидкости и обычного кристалла и чем похож на них? Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен. Этим он отличается от известных всем кристаллов. Однако, несмотря на это свойство, объединяющее его с жид­костью, он обладает свойством, характерным для кри­сталлов. Это — упорядочение в пространстве молекул, образующих кристалл. Правда, это упорядочение не та­кое полное, как в обычных кристаллах, но, тем не менее, оно существенно влияет на свойства жидких кристаллов, чем и отличает их от обычных жидкостей. Неполное про­странственное упорядочение молекул, образующих жид­кий кристалл, проявляется в том, что в жидких кристал­лах нет полного порядка в пространственном располо­жении центров тяжести молекул, хотя частичный порядок может быть. Это означает, что у них нет жесткой кри­сталлической решетки. Поэтому жидкие кристаллы, по­добно обычным жидкостям, обладают свойством текуче­сти.


Матрица — это основная деталь жк-монитора, которая непосредственно формирует изображение на экране. Качество изображения любого ЖК (LCD) монитора, в первую очередь, зависит от встроенной в него матрицы.

Матрицы на основе жидких кристаллов используются не только в компьютерных мониторах, они широко применяются в различных электронных устройствах, таких как: телевизоры, фото, видео - камеры,  ноутбуки, планшеты, сканеры, принтеры, смартфоны, телефоны, автомобильные навигаторы, электронные книги, плееры, часы, термометры и прочие.

TFT[7]матрица — матрица на основе тонкоплёночных транзисторов.

В различных электронных устройствах применяются разные типы TFT-матриц. Компьютерные LCD (ЖК) мониторы, в том числе экраны ноутбуков, планшетов и смартфонов, как правило, комплектуются TFT-матрицами следующих типов: TN, VA, MVA, PVA, IPS, PLS. Все они управляется тонкоплёночными транзисторами (TFT) и отличаются друг от друга принципиальными технологическими решениями.

Каждый пиксель на экране управляется тремя транзисторами, соответствующими основным цветам RGB (красному, зеленому и синему). Если включен только один из этих трёх транзисторов образуется субпиксель. Так называемые «битые» пиксели появляются при выходе из строя этих транзисторов. На разных типах TFT-матриц битые пиксели выглядят по-разному, например на TN-матрицах они светятся, образуя белые точки, а на IPS-матрицах — чёрные.

TN-TFT — технология выполнения LCD (ЖК) матрицы, когда кристаллы, при отсутствии напряжения, поворачиваются друг к другу под углом 90° в горизонтальной плоскости между двумя пластинами. Кристаллы расположены по спирали, при подаче максимального напряжения кристаллы поворачиваются таким образом, что при прохождении света через них образуются черные пиксели. Без напряжения — белые.

Качество цветопередачи матриц TN-TFT — довольно удовлетворительно. На таких матрицах пиксели имеют неоднородное свечение, в результате чего искажаются цвета. Это особенно заметно при изменении угла наблюдения (особенно по вертикали). С другой стороны матрицы TN + film (Twisted Nematic + film), или просто TN — самые быстрые по отклику и дешевые в производстве.

LCD - мониторы, оснащённые TN - матрицами отлично подходят для работы с текстовыми документами, просмотра фильмов и компьютерных игр. Так же, TN-матрицы наиболее часто используются в мобильных и портативных устройствах из-за их малой энергоёмкости.

IPS-матрицы имеют как преимущества, так и недостатки по сравнению с TN-матрицами. Преимуществом является тот факт, что в данном случае получается идеально черный цвет, а не серый, как в TN-матрицах. Другим неоспоримым преимуществом данной технологии являются большие углы обзора. К недостаткам IPS-матриц стоит отнести большее, чем для TN-матриц, время реакции пикселя. Впрочем, к вопросу о времени реакции пикселя мы еще вернемся. В заключение отметим, что существуют различные модификации IPS-матриц (Super IPS, Dual Domain IPS), позволяющие улучшить их характеристики.


MVA является развитием технологии VA, то есть технологии с вертикальным упорядочиванием молекул. В отличие от TN- и IPS-матриц, в данном случае используются жидкие кристаллы с отрицательной диэлектрической анизотропией, которые ориентируются перпендикулярно к направлению линий электрического поля. С целью увеличения углов обзора в системах с вертикальным упорядочиванием молекул используется мультидоменная структура, что и приводит к созданию матриц типа MVA. Смысл этой технологии заключается в том, что каждый субпиксел разбивается на несколько зон (доменов) с использованием специальных выступов, которые несколько меняют ориентацию молекул, заставляя их выравниваться по поверхности выступа. Это приводит к тому, что каждый такой домен светит в своем направлении (в пределах некоторого телесного угла), а совокупность всех направлений расширяет угол обзора монитора.

К достоинствам MVA-матриц следует отнести высокую контрастность (благодаря возможности получения идеально черного цвета) и большие углы обзора (вплоть до 170°). В настоящее время существует несколько разновидностей технологии MVA, например PVA (Patterned Vertical Alignment) компании Samsung, MVA-Premium и др., которые в еще большей степени повышают характеристики MVA-матриц.

Сегодня в ЖК-мониторах максимальная яркость, заявляемая в технической документации, составляет от 250 до 500 кд/м2. И если яркость монитора достаточна высока, то это обязательно указывается в рекламных буклетах и преподносится как одно из основных преимуществ монитора. Впрочем, как раз в этом кроется один из подводных камней. Парадокс заключается в том, что ориентироваться на цифры, указанные в технической документации, нельзя. Это касается не только яркости, но и контраста, углов обзора и времени реакции пикселя.

Мало того, что они могут вовсе не соответствовать реально наблюдаемым значениям, иногда вообще трудно понять, что означают эти цифры. Прежде всего, существуют разные методики измерения, описанные в различных стандартах; соответственно измерения, проводимые по разным методикам, дают различные результаты, причем вы вряд ли сможете выяснить, по какой именно методике и как проводились измерения. Вот один простой пример. Измеряемая яркость зависит от цветовой температуры, но когда говорят, что яркость монитора составляет 300 кд/м2, то возникает вопрос: при какой цветовой температуре достигается эта самая максимальная яркость? Более того, производители указывают яркость не для монитора, а для ЖК-матрицы, что совсем не одно и то же.


Для измерения яркости используются специальные эталонные сигналы генераторов с точно заданной цветовой температурой, поэтому характеристики самого монитора как конечного изделия могут существенно отличаться от заявленных в технической документации. А ведь для пользователя первостепенное значение имеют характеристики собственно монитора, а не матрицы.

Яркость является для ЖК-монитора действительно важной характеристикой. К примеру, при недостаточной яркости вы вряд ли сможете играть в различные игры или просматривать DVD-фильмы. Кроме того, окажется некомфортной работа за монитором в условиях дневного освещения (внешней засветки).

Однако делать на этом основании вывод, что монитор с заявленной яркостью 450 кд/м2 чем-то лучше монитора с яркостью 350 кд/м2, было бы преждевременно. Во-первых, как уже отмечалось, заявленная и реальная яркость – это не одно и то же, а во-вторых, вполне достаточно, чтобы ЖК-монитор имел яркость 200-250 кд/м2 (но не заявленную, а реально наблюдаемую). Кроме того, немаловажное значение имеет и тот факт, каким образом регулируется яркость монитора.

С точки зрения физики регулировка яркости может производиться путем изменения яркости ламп подсветки. Это достигается либо за счет регулировки тока разряда в лампе (в мониторах в качестве ламп подсветки используются лампы дневного света с холодным катодом Cold Cathode Fluorescent Lamp, CCFL), либо за счет так называемой широтно-импульсной модуляции питания лампы. При широтно-импульсной модуляции напряжение на лампу подсветки подается импульсами определенной длительности. В результате лампа подсветки светится не постоянно, а только в периодически повторяющиеся интервалы времени, но за счет инертности зрения создается впечатление, что лампа горит постоянно (частота следования импульсов составляет более 200 Гц).

Кроме регулирования яркости монитора за счет лампы подсветки, иногда это регулировка осуществляется самой матрицей. Фактически, к управляющему напряжению на электродах ЖК-ячейки добавляется постоянная составляющая. Это позволяет полностью открывать ЖК-ячейку, но не позволяет полностью ее закрывать. В этом случае при увеличении яркости черный цвет перестает быть черным (матрица становится частично прозрачной даже при закрытой ЖК-ячейке).

Потребляемая мощность.

Потребляемая мощность LCD монитора – примерно 50 Ватт. Она зависит в основном от размера экрана. Чем он больше – тем больше электроэнергии необходимо для обеспечения работы. В отличие от ЖК, ЭЛТ мониторы более прожорливы. ЖК-мониторы являются самыми экономичными — они потребляют от 25 до 70 Вт. В зависимости от режима, в котором они работают, для любого вида мониторов их можно выделить три – рабочий, режим ожидания и спящий. В спящем режиме лампа подсветки не работает, соответственно, на нее не надо тратить электроэнергию. Заметим, что потребляемая мощность LCD и ЭЛТ мониторов зависит от уровня яркости. Уменьшив ее, вы уменьшаете потребление электроэнергии, особенно наглядно это заметно по работе ноутбуков. Уменьшение яркости позволяет продлить время его работы в некоторых случаях даже в полтора раза.


Время реакции пикселя.

Время реакции, или время отклика пикселя, как правило, указывается в технической документации на монитор и считается одной из важнейших характеристик монитора (что не совсем верно).

В ЖК-мониторах время реакции пикселя, которое зависит от типа матрицы, измеряется десятками миллисекунд (в новых TN+Film-матрицах время реакции пикселя составляет 12 мс), а это приводит к смазанности меняющейся картинки и может быть заметно на глаз.

Различают время включения и время выключения пикселя. Под временем включения пикселя понимается промежуток времени, необходимый для открытия ЖК-ячейки, а под временем выключения – промежуток времени, необходимый для ее закрытия. Когда же говорят о времени реакции пикселя, то понимают суммарное время включения и выключения пикселя.

Время включения пикселя и время его выключения могут существенно различаться.

Когда говорят о времени реакции пикселя, указываемом в технической документации на монитор, то имеют в виду время реакции именно матрицы, а не монитора. Кроме того, время реакции пикселя, указываемое в технической документации, различными производителями матриц трактуется по-разному. К примеру, один из вариантов трактовки времени включения (выключения) пикселя заключается в том, что это время изменения яркости пикселя от 10 до 90% (от 90 до 10%).

Измерении времени реакции пикселя, подразумевается, что речь идет о переключениях между черным и белым цветами. Если с черным цветом вопросов не возникает (пиксель просто закрыт), то выбор белого цвета не очевиден. Как будет меняться время реакции пикселя, если измерять его при переключении между различными полутонами? Этот вопрос имеет огромное практическое значение. Дело в том, что переключение с черного фона на белый или, наоборот, в реальных приложениях встречается сравнительно редко. В большинстве приложений реализуются, как правило, переходы между полутонами. И если время переключения между черным и белым цветами окажется меньше, чем время переключения между градациями серого, то никакого практического значения время реакции пикселя иметь не будет и ориентироваться на эту характеристику монитора нельзя. Какой же можно вывод сделать из вышеизложенного? Все очень просто: заявляемое производителем время реакции пикселя не позволяет однозначно судить о динамической характеристике монитора. Более правильно в этом смысле говорить не о времени переключения пикселя между белым и черным цветами, а о среднем времени переключения пикселя между полутонами.