Файл: Проектирование реализации операций бизнес-процесса «Движение библиотечного фонда» (ДИАГРАММА ПОСЛЕДОВАТЕЛЬНОСТИ).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 30.06.2023

Просмотров: 179

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

[linkdata]=load('linksdata.mat','s1','s2', 's3','s4','s5','s6','s7','A1');

%Place the robot link 'data' in a storage area

setappdata(0,'Link1_data',linkdata.s1);

setappdata(0,'Link2_data',linkdata.s2);

setappdata(0,'Link3_data',linkdata.s3);

setappdata(0,'Link4_data',linkdata.s4);

setappdata(0,'Link5_data',linkdata.s5);

setappdata(0,'Link6_data',linkdata.s6);

setappdata(0,'Link7_data',linkdata.s7);

setappdata(0,'Area_data',linkdata.A1);

end

%

%%

% Use forward kinematics to place the robot in a specified configuration.

%

function PumaPOS(theta1,theta2,theta3,theta4,theta5,theta6)

s1 = getappdata(0,'Link1_data');

s2 = getappdata(0,'Link2_data');

s3 = getappdata(0,'Link3_data');

s4 = getappdata(0,'Link4_data');

s5 = getappdata(0,'Link5_data');

s6 = getappdata(0,'Link6_data');

s7 = getappdata(0,'Link7_data');

A1 = getappdata(0,'Area_data');

%

a2 = 650;

a3 = 0;

d3 = 190;

d4 = 600;

Px = 5000;

Py = 5000;

Pz = 5000;

t1 = theta1;

t2 = theta2;

t3 = theta3 %-180;

t4 = theta4;

t5 = theta5;

t6 = theta6;

%

% Forward Kinematics

T_01 = tmat(0, 0, 0, t1);

T_12 = tmat(-90, 0, 0, t2);

T_23 = tmat(0, a2, d3, t3);

T_34 = tmat(-90, a3, d4, t4);

T_45 = tmat(90, 0, 0, t5);

T_56 = tmat(-90, 0, 0, t6);

%T_01 = T_01;

T_02 = T_01*T_12;

T_03 = T_02*T_23;

T_04 = T_03*T_34;

T_05 = T_04*T_45;

T_06 = T_05*T_56;

%

Link1 = s1.V1;

Link2 = (T_01*s2.V2')';

Link3 = (T_02*s3.V3')';

Link4 = (T_03*s4.V4')';

Link5 = (T_04*s5.V5')';

Link6 = (T_05*s6.V6')';

Link7 = (T_06*s7.V7')';

handles = getappdata(0,'patch_h'); %

L1 = handles(1);

L2 = handles(2);

L3 = handles(3);

L4 = handles(4);

L5 = handles(5);

L6 = handles(6);

L7 = handles(7);

%

set(L1,'vertices',Link1(:,1:3),'facec', [0.717,0.116,0.123]);

set(L1, 'EdgeColor','none');

set(L2,'vertices',Link2(:,1:3),'facec', [0.216,1,.583]);

set(L2, 'EdgeColor','none');

set(L3,'vertices',Link3(:,1:3),'facec', [0.306,0.733,1]);

set(L3, 'EdgeColor','none');

set(L4,'vertices',Link4(:,1:3),'facec', [1,0.542,0.493]);

set(L4, 'EdgeColor','none');

set(L5,'vertices',Link5(:,1:3),'facec', [0.216,1,.583]);

set(L5, 'EdgeColor','none');

set(L6,'vertices',Link6(:,1:3),'facec', [1,1,0.255]);

set(L6, 'EdgeColor','none');

set(L7,'vertices',Link7(:,1:3),'facec', [0.306,0.733,1]);

set(L7, 'EdgeColor','none');

end

%%

% This function computes the Inverse Kinematics for the Puma 762 robot

% given X,Y,Z coordinates for a point in the workspace. Note: The IK are

% computed for the origin of Coordinate systems 4,5 & 6.

function [theta1,theta2,theta3,theta4,theta5,theta6] = PumaIK(Px,Py,Pz)

theta4 = 0;

theta5 = 0;

theta6 = 0;

sign1 = 1;

sign3 = 1;

nogo = 0;

noplot = 0;

% Because the sqrt term in theta1 & theta3 can be + or - we run through

% all possible combinations (i = 4) and take the first combination that

% satisfies the joint angle constraints.

while nogo == 0;

for i = 1:1:4

if i == 1

sign1 = 1;

sign3 = 1;

elseif i == 2

sign1 = 1;

sign3 = -1;

elseif i == 3

sign1 = -1;

sign3 = 1;

else

sign1 = -1;

sign3 = -1;

end

a2 = 650;

a3 = 0;

d3 = 190;

d4 = 600;

rho = sqrt(Px^2+Py^2);

phi = atan2(Py,Px);

K = (Px^2+Py^2+Pz^2-a2^2-a3^2-d3^2-d4^2)/(2*a2);

c4 = cos(theta4);

s4 = sin(theta4);

c5 = cos(theta5);

s5 = sin(theta5);

c6 = cos(theta6);

s6 = sin(theta6);

theta1 = (atan2(Py,Px)-atan2(d3,sign1*sqrt(Px^2+Py^2-d3^2)));

c1 = cos(theta1);

s1 = sin(theta1);

theta3 = (atan2(a3,d4)-atan2(K,sign3*sqrt(a3^2+d4^2-K^2)));

c3 = cos(theta3);

s3 = sin(theta3);

t23 = atan2((-a3-a2*c3)*Pz-(c1*Px+s1*Py)*(d4-a2*s3),(a2*s3-d4)*Pz+(a3+a2*c3)*(c1*Px+s1*Py));

theta2 = (t23 - theta3);

c2 = cos(theta2);

s2 = sin(theta2);

s23 = ((-a3-a2*c3)*Pz+(c1*Px+s1*Py)*(a2*s3-d4))/(Pz^2+(c1*Px+s1*Py)^2);


c23 = ((a2*s3-d4)*Pz+(a3+a2*c3)*(c1*Px+s1*Py))/(Pz^2+(c1*Px+s1*Py)^2);

r13 = -c1*(c23*c4*s5+s23*c5)-s1*s4*s5;

r23 = -s1*(c23*c4*s5+s23*c5)+c1*s4*s5;

r33 = s23*c4*s5 - c23*c5;

theta4 = atan2(-r13*s1+r23*c1,-r13*c1*c23-r23*s1*c23+r33*s23);

r11 = c1*(c23*(c4*c5*c6-s4*s6)-s23*s5*c6)+s1*(s4*c5*c6+c4*s6);

r21 = s1*(c23*(c4*c5*c6-s4*s6)-s23*s5*c6)-c1*(s4*c5*c6+c4*s6);

r31 = -s23*(c4*c5*c6-s4*s6)-c23*s5*c6;

s5 = -(r13*(c1*c23*c4+s1*s4)+r23*(s1*c23*c4-c1*s4)-r33*(s23*c4));

c5 = r13*(-c1*s23)+r23*(-s1*s23)+r33*(-c23);

theta5 = atan2(s5,c5);

s6 = -r11*(c1*c23*s4-s1*c4)-r21*(s1*c23*s4+c1*c4)+r31*(s23*s4);

c6 = r11*((c1*c23*c4+s1*s4)*c5-c1*s23*s5)+r21*((s1*c23*c4-c1*s4)*c5-s1*s23*s5)-r31*(s23*c4*c5+c23*s5);

theta6 = atan2(s6,c6);

theta1 = theta1*180/pi;

theta2 = theta2*180/pi;

theta3 = theta3*180/pi;

theta4 = theta4*180/pi;

theta5 = theta5*180/pi;

theta6 = theta6*180/pi;

if theta2>=160 && theta2<=180

theta2 = -theta2;

end

if theta1<=160 && theta1>=-160 && (theta2<=20 && theta2>=-200) && theta3<=45 && theta3>=-225 && theta4<=266 && theta4>=-266 && theta5<=100 && theta5>=-100 && theta6<=266 && theta6>=-266

nogo = 1;

theta3 = theta3+180;

break

end

if i == 4 && nogo == 0

h = errordlg('Point unreachable due to joint angle constraints.','JOINT ERROR');

waitfor(h);

nogo = 1;

noplot = 1;

break

end

end

end

end

%

%%

function pumaANI(theta1,theta2,theta3,theta4,theta5,theta6,n,trail)

% This function will animate the Puma 762 robot given joint angles.

% n is number of steps for the animation

% trail is 'y' or 'n' (n = anything else) for leaving a trail.

%

%disp('in animate');

a2 = 650; %D-H paramaters

a3 = 0;

d3 = 190;

d4 = 600;

% Err2 = 0;

%

ThetaOld = getappdata(0,'ThetaOld');

%

theta1old = ThetaOld(1);

theta2old = ThetaOld(2);

theta3old = ThetaOld(3);

theta4old = ThetaOld(4);

theta5old = ThetaOld(5);

theta6old = ThetaOld(6);

%

t1 = linspace(theta1old,theta1,n);

t2 = linspace(theta2old,theta2,n);

t3 = linspace(theta3old,theta3,n);% -180;

t4 = linspace(theta4old,theta4,n);

t5 = linspace(theta5old,theta5,n);

t6 = linspace(theta6old,theta6,n);

n = length(t1);

for i = 2:1:n

% Forward Kinematics

%

T_01 = tmat(0, 0, 0, t1(i));

T_12 = tmat(-90, 0, 0, t2(i));

T_23 = tmat(0, a2, d3, t3(i));

T_34 = tmat(-90, a3, d4, t4(i));

T_45 = tmat(90, 0, 0, t5(i));

T_56 = tmat(-90, 0, 0, t6(i));

%

% % T_67 = [ 1 0 0 0

% % 0 1 0 0

% % 0 0 1 188

% % 0 0 0 1];

%T_01 = T_01; % it is, but don't need to say so.

T_02 = T_01*T_12;

T_03 = T_02*T_23;

T_04 = T_03*T_34;

T_05 = T_04*T_45;

T_06 = T_05*T_56;

% T_07 = T_06*T_67;

%

s1 = getappdata(0,'Link1_data');

s2 = getappdata(0,'Link2_data');

s3 = getappdata(0,'Link3_data');

s4 = getappdata(0,'Link4_data');

s5 = getappdata(0,'Link5_data');

s6 = getappdata(0,'Link6_data');

s7 = getappdata(0,'Link7_data');

%A1 = getappdata(0,'Area_data');

Link1 = s1.V1;

Link2 = (T_01*s2.V2')';

Link3 = (T_02*s3.V3')';

Link4 = (T_03*s4.V4')';

Link5 = (T_04*s5.V5')';

Link6 = (T_05*s6.V6')';

Link7 = (T_06*s7.V7')';

% Tool = T_07;

% if sqrt(Tool(1,4)^2+Tool(2,4)^2)<514

% Err2 = 1;

% break

% end

%

handles = getappdata(0,'patch_h'); %

L1 = handles(1);

L2 = handles(2);

L3 = handles(3);

L4 = handles(4);

L5 = handles(5);

L6 = handles(6);

L7 = handles(7);

Tr = handles(9);

%

set(L1,'vertices',Link1(:,1:3),'facec', [0.717,0.116,0.123]);

set(L1, 'EdgeColor','none');

set(L2,'vertices',Link2(:,1:3),'facec', [0.216,1,.583]);

set(L2, 'EdgeColor','none');

set(L3,'vertices',Link3(:,1:3),'facec', [0.306,0.733,1]);

set(L3, 'EdgeColor','none');

set(L4,'vertices',Link4(:,1:3),'facec', [1,0.542,0.493]);


set(L4, 'EdgeColor','none');

set(L5,'vertices',Link5(:,1:3),'facec', [0.216,1,.583]);

set(L5, 'EdgeColor','none');

set(L6,'vertices',Link6(:,1:3),'facec', [1,1,0.255]);

set(L6, 'EdgeColor','none');

set(L7,'vertices',Link7(:,1:3),'facec', [0.306,0.733,1]);

set(L7, 'EdgeColor','none');

% store trail in appdata

if trail == 'y'

x_trail = getappdata(0,'xtrail');

y_trail = getappdata(0,'ytrail');

z_trail = getappdata(0,'ztrail');

%

xdata = [x_trail T_04(1,4)];

ydata = [y_trail T_04(2,4)];

zdata = [z_trail T_04(3,4)];

%

setappdata(0,'xtrail',xdata); % used for trail tracking.

setappdata(0,'ytrail',ydata); % used for trail tracking.

setappdata(0,'ztrail',zdata); % used for trail tracking.

%

set(Tr,'xdata',xdata,'ydata',ydata,'zdata',zdata);

end

drawnow

end

setappdata(0,'ThetaOld',[theta1,theta2,theta3,theta4,theta5,theta6]);

end

%%

%

%

%%

function InitHome

% Use forward kinematics to place the robot in a specified

% configuration.

% Figure setup data, create a new figure for the GUI

set(0,'Units','pixels')

dim = get(0,'ScreenSize');

fig_1 = figure('doublebuffer','on','Position',[0,35,dim(3)-200,dim(4)-110],...

'MenuBar','none','Name',' 3D Puma Robot Graphical Demo',...

'NumberTitle','off','CloseRequestFcn',@del_app);

hold on;

%light('Position',[-1 0 0]);

light % add a default light

daspect([1 1 1]) % Setting the aspect ratio

view(135,25)

xlabel('X'),ylabel('Y'),zlabel('Z');

title('WWU Robotics Lab PUMA 762');

axis([-1500 1500 -1500 1500 -1120 1500]);

plot3([-1500,1500],[-1500,-1500],[-1120,-1120],'k')

plot3([-1500,-1500],[-1500,1500],[-1120,-1120],'k')

plot3([-1500,-1500],[-1500,-1500],[-1120,1500],'k')

plot3([-1500,-1500],[1500,1500],[-1120,1500],'k')

plot3([-1500,1500],[-1500,-1500],[1500,1500],'k')

plot3([-1500,-1500],[-1500,1500],[1500,1500],'k')

s1 = getappdata(0,'Link1_data');

s2 = getappdata(0,'Link2_data');

s3 = getappdata(0,'Link3_data');

s4 = getappdata(0,'Link4_data');

s5 = getappdata(0,'Link5_data');

s6 = getappdata(0,'Link6_data');

s7 = getappdata(0,'Link7_data');

A1 = getappdata(0,'Area_data');

%

a2 = 650;

a3 = 0;

d3 = 190;

d4 = 600;

Px = 5000;

Py = 5000;

Pz = 5000;

%The 'home' position, for init.

t1 = 90;

t2 = -90;

t3 = -90;

t4 = 0;

t5 = 0;

t6 = 0;

% Forward Kinematics

T_01 = tmat(0, 0, 0, t1);

T_12 = tmat(-90, 0, 0, t2);

T_23 = tmat(0, a2, d3, t3);

T_34 = tmat(-90, a3, d4, t4);

T_45 = tmat(90, 0, 0, t5);

T_56 = tmat(-90, 0, 0, t6);

% Each link fram to base frame transformation

T_02 = T_01*T_12;

T_03 = T_02*T_23;

T_04 = T_03*T_34;

T_05 = T_04*T_45;

T_06 = T_05*T_56;

% Actual vertex data of robot links

Link1 = s1.V1;

Link2 = (T_01*s2.V2')';

Link3 = (T_02*s3.V3')';

Link4 = (T_03*s4.V4')';

Link5 = (T_04*s5.V5')';

Link6 = (T_05*s6.V6')';

Link7 = (T_06*s7.V7')';

% points are no fun to watch, make it look 3d.

L1 = patch('faces', s1.F1, 'vertices' ,Link1(:,1:3));

L2 = patch('faces', s2.F2, 'vertices' ,Link2(:,1:3));

L3 = patch('faces', s3.F3, 'vertices' ,Link3(:,1:3));

L4 = patch('faces', s4.F4, 'vertices' ,Link4(:,1:3));

L5 = patch('faces', s5.F5, 'vertices' ,Link5(:,1:3));

L6 = patch('faces', s6.F6, 'vertices' ,Link6(:,1:3));

L7 = patch('faces', s7.F7, 'vertices' ,Link7(:,1:3));

A1 = patch('faces', A1.Fa, 'vertices' ,A1.Va(:,1:3));

Tr = plot3(0,0,0,'b.'); % holder for trail paths

%

setappdata(0,'patch_h',[L1,L2,L3,L4,L5,L6,L7,A1,Tr])

%

setappdata(0,'xtrail',0); % used for trail tracking.

setappdata(0,'ytrail',0); % used for trail tracking.

setappdata(0,'ztrail',0); % used for trail tracking.

%

set(L1, 'facec', [0.717,0.116,0.123]);

set(L1, 'EdgeColor','none');

set(L2, 'facec', [0.216,1,.583]);

set(L2, 'EdgeColor','none');

set(L3, 'facec', [0.306,0.733,1]);

set(L3, 'EdgeColor','none');


set(L4, 'facec', [1,0.542,0.493]);

set(L4, 'EdgeColor','none');

set(L5, 'facec', [0.216,1,.583]);

set(L5, 'EdgeColor','none');

set(L6, 'facec', [1,1,0.255]);

set(L6, 'EdgeColor','none');

set(L7, 'facec', [0.306,0.733,1]);

set(L7, 'EdgeColor','none');

set(A1, 'facec', [.8,.8,.8],'FaceAlpha',.25);

set(A1, 'EdgeColor','none');

%

setappdata(0,'ThetaOld',[90,-90,-90,0,0,0]);

%

end

%%

function T = tmat(alpha, a, d, theta)

% tmat(alpha, a, d, theta) (T-Matrix used in Robotics)

% The homogeneous transformation called the "T-MATRIX"

% as used in the Kinematic Equations for robotic type

% systems (or equivalent).

%

% This is equation 3.6 in Craig's "Introduction to Robotics."

% alpha, a, d, theta are the Denavit-Hartenberg parameters.

%

% (NOTE: ALL ANGLES MUST BE IN DEGREES.)

%

alpha = alpha*pi/180; %Note: alpha is in radians.

theta = theta*pi/180; %Note: theta is in radians.

c = cos(theta);

s = sin(theta);

ca = cos(alpha);

sa = sin(alpha);

T = [c -s 0 a; s*ca c*ca -sa -sa*d; s*sa c*sa ca ca*d; 0 0 0 1];

end

%%

function del_app(varargin)

%This is the main figure window close function, to remove any

% app data that may be left due to using it for geometry.

%CloseRequestFcn

% here is the data to remove:

% Link1_data: [1x1 struct]

% Link2_data: [1x1 struct]

% Link3_data: [1x1 struct]

% Link4_data: [1x1 struct]

% Link5_data: [1x1 struct]

% Link6_data: [1x1 struct]

% Link7_data: [1x1 struct]

% Area_data: [1x1 struct]

% patch_h: [1x9 double]

% ThetaOld: [90 -182 -90 -106 80 106]

% xtrail: 0

% ytrail: 0

% ztrail: 0

% Now remove them.

rmappdata(0,'Link1_data');

rmappdata(0,'Link2_data');

rmappdata(0,'Link3_data');

rmappdata(0,'Link4_data');

rmappdata(0,'Link5_data');

rmappdata(0,'Link6_data');

rmappdata(0,'Link7_data');

rmappdata(0,'ThetaOld');

rmappdata(0,'Area_data');

rmappdata(0,'patch_h');

rmappdata(0,'xtrail');

rmappdata(0,'ytrail');

rmappdata(0,'ztrail');

delete(fig_1);

end

%%

function [hout,ax_out] = uibutton(varargin)

%uibutton: Create pushbutton with more flexible labeling than uicontrol.

% Usage:

% uibutton accepts all the same arguments as uicontrol except for the

% following property changes:

%

% Property Values

% ----------- ------------------------------------------------------

% Style 'pushbutton', 'togglebutton' or 'text', default =

% 'pushbutton'.

% String Same as for text() including cell array of strings and

% TeX or LaTeX interpretation.

% Interpreter 'tex', 'latex' or 'none', default = default for text()

%

% Syntax:

% handle = uibutton('PropertyName',PropertyValue,...)

% handle = uibutton(parent,'PropertyName',PropertyValue,...)

% [text_obj,axes_handle] = uibutton('Style','text',...

% 'PropertyName',PropertyValue,...)

%

% uibutton creates a temporary axes and text object containing the text to

% be displayed, captures the axes as an image, deletes the axes and then

% displays the image on the uicontrol. The handle to the uicontrol is

% returned. If you pass in a handle to an existing uicontol as the first

% argument then uibutton will use that uicontrol and not create a new one.

%

% If the Style is set to 'text' then the axes object is not deleted and the

% text object handle is returned (as well as the handle to the axes in a

% second output argument).

%

% See also UICONTROL.

% Version: 1.6, 20 April 2006

% Author: Douglas M. Schwarz

% Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu

% Real_email = regexprep(Email,{'=','*'},{'@','.'})

% Detect if first argument is a uicontrol handle.

keep_handle = false;

if nargin > 0

h = varargin{1};

if isscalar(h) && ishandle(h) && strcmp(get(h,'Type'),'uicontrol')

keep_handle = true;

varargin(1) = [];

end

end

% Parse arguments looking for 'Interpreter' property. If found, note its


% value and then remove it from where it was found.

interp_value = get(0,'DefaultTextInterpreter');

arg = 1;

remove = [];

while arg <= length(varargin)

v = varargin{arg};

if isstruct(v)

fn = fieldnames(v);

for i = 1:length(fn)

if strncmpi(fn{i},'interpreter',length(fn{i}))

interp_value = v.(fn{i});

v = rmfield(v,fn{i});

end

end

varargin{arg} = v;

arg = arg + 1;

elseif ischar(v)

if strncmpi(v,'interpreter',length(v))

interp_value = varargin{arg+1};

remove = [remove,arg,arg+1];

end

arg = arg + 2;

elseif arg == 1 && isscalar(v) && ishandle(v) && ...

any(strcmp(get(h,'Type'),{'figure','uipanel'}))

arg = arg + 1;

else

error('Invalid property or uicontrol parent.')

end

end

varargin(remove) = [];

% Create uicontrol, get its properties then hide it.

if keep_handle

set(h,varargin{:})

else

h = uicontrol(varargin{:});

end

s = get(h);

if ~any(strcmp(s.Style,{'pushbutton','togglebutton','text'}))

delete(h)

error('''Style'' must be pushbutton, togglebutton or text.')

end

set(h,'Visible','off')

% Create axes.

parent = get(h,'Parent');

ax = axes('Parent',parent,...

'Units',s.Units,...

'Position',s.Position,...

'XTick',[],'YTick',[],...

'XColor',s.BackgroundColor,...

'YColor',s.BackgroundColor,...

'Box','on',...

'Color',s.BackgroundColor);

% Adjust size of axes for best appearance.

set(ax,'Units','pixels')

pos = round(get(ax,'Position'));

if strcmp(s.Style,'text')

set(ax,'Position',pos + [0 1 -1 -1])

else

set(ax,'Position',pos + [4 4 -8 -8])

end

switch s.HorizontalAlignment

case 'left'

x = 0.0;

case 'center'

x = 0.5;

case 'right'

x = 1;

end

% Create text object.

text_obj = text('Parent',ax,...

'Position',[x,0.5],...

'String',s.String,...

'Interpreter',interp_value,...

'HorizontalAlignment',s.HorizontalAlignment,...

'VerticalAlignment','middle',...

'FontName',s.FontName,...

'FontSize',s.FontSize,...

'FontAngle',s.FontAngle,...

'FontWeight',s.FontWeight,...

'Color',s.ForegroundColor);

% If we are creating something that looks like a text uicontrol then we're

% all done and we return the text object and axes handles rather than a

% uicontrol handle.

if strcmp(s.Style,'text')

delete(h)

if nargout

hout = text_obj;

ax_out = ax;

end

return

end

% Capture image of axes and then delete the axes.

frame = getframe(ax);

delete(ax)

% Build RGB image, set background pixels to NaN and put it in 'CData' for

% the uicontrol.

if isempty(frame.colormap)

rgb = frame.cdata;

else

rgb = reshape(frame.colormap(frame.cdata,:),[pos([4,3]),3]);

end

size_rgb = size(rgb);

rgb = double(rgb)/255;

back = repmat(permute(s.BackgroundColor,[1 3 2]),size_rgb(1:2));

isback = all(rgb == back,3);

rgb(repmat(isback,[1 1 3])) = NaN;

set(h,'CData',rgb,'String','','Visible',s.Visible)

% Assign output argument if necessary.

if nargout

hout = h;

end

%%

end

end

% Finally.

demo = uicontrol(fig_1,'String','Demo','callback',@demo_button_press,...

'Position',[20 5 60 20]);

rnd_demo = uicontrol(fig_1,'String','Random Move','callback',@rnd_demo_button_press,...

'Position',[100 5 80 20]);

clr_trail = uicontrol(fig_1,'String','Clr Trail','callback',@clr_trail_button_press,...

'Position',[200 5 60 20]);

%

home = uicontrol(fig_1,'String','Home','callback',@home_button_press,...

'Position',[280 5 70 20]);

%

% Kinematics Panel

%

K_p = uipanel(fig_1,...

'units','pixels',...

'Position',[20 45 265 200],...

'Title','Kinematics','FontSize',11);

%

% Angle Range Default Name

% Theta 1: 320 (-160 to 160) 90 Waist Joint

% Theta 2: 220 (-110 to 110) -90 Shoulder Joint

% Theta 3: 270 (-135 to 135) -90 Elbow Joint

% Theta 4: 532 (-266 to 266) 0 Wrist Roll