конспект.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлена: 08.06.2021

Просмотров: 19

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1.3.2 Теорема Лапласа для вычисления определителя квадратной матрицы.


- Минор элемента аij, Мij

Минором элемента аij квадратной матрицы n-ого порядка называется определитель n-1 порядка, полученного путем вычеркивания i-ой строки и

j-ого столбца.


А= М13= М22= М32=


- Алгебраическое дополнение элемента aij, Aij


Алгебраическим дополнением Aij элемента aij квадратной матрицы n-ого порядка называется его минор, взятый со знаком (-1)i+j.

Aij=(-1)i+jMij


А= А13=(-1)1+3 А22=(-1)2+2М22=120=20

- Теорема Лапласа

Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.


i1Ai1+ai2Ai2+…+ainAin=

Пример 2. Вычислить определитель:

Решение:

Для вычисления данного определителя воспользуемся теоремой Лапласа: Определитель квадратной матрицы равен сумме произведений элементов, какой либо строки (столбца) на их алгебраические дополнения. Для более удобного вычисления выполним элементарные преобразования: умножим элементы 1-ой строки на 1, (-2), (-1), и прибавляя их соответственно к элементам 2-ой, 3-ей, 4-ой строк, добиваемся того, чтобы все элементы 3-его столбца(кроме а13) равнялись нулю и разложим определитель по элементам 3-его столбца:


Для вычисления последнего определителя воспользовались правилом треугольника.

Ответ: определитель матрицы равен - 9.


2.3 Метод обратной матрицы.

Обозначим через матрицу А матрицу системы (1.2), составленную из коэффициентов при неизвестных, через Х – матрицу – столбец из неизвестных, через В – матрицу- столбец из свободных членов:

.

Определение. Матрица А-1 называется обратной для матрицы А, если

А-1·А=А·А-1 =Е, где Е – единичная матрица того же порядка, что и А.

Определение. Матрица А называется невырожденной, если ее определитель не равен нулю, т.е.

Каждая невырожденная матрица А имеет обратную, причем

,

где А11, А12, …А33 – алгебраические дополнения элементов матрицы А.

Систему (1.2) можно записать в матричной форме: А·Х=В.

Умножим слева на А-1 обе части этого равенства, получим:

А-1·А·Х = А-1·В. Так как А-1·А=Е, имеем Х= А-1·В – это решение системы в матричном виде. Следовательно, матрица – решение Х находится как произведение А-1 и В.

Пример. Решить систему методом обратной матрицы:


Обозначим:

Тогда в матричной форме система имеет вид: АХ=В. Чтобы решить матричное уравнение, составим матрицу обратную матрице А.

Чтобы определить, имеет ли матрица А обратную нужно найти её определитель. Если А,0, то матрица А имеет обратную матрицу А

т. к. определитель матрицы А |А| О, то матрица А имеет обратную матрицу А-1

Составим транспонированную матрицу:

Найдем алгебраические дополнения для Аij по формуле:
Аij=(-l)i+j • М:/, где Мцминор. Минором Мц называется определитель матрицы, полученный путём вычёркивания i-строки и j-столбца.


Из алгебраических дополнений составим присоединённую матрицу


Находим обратную матрицу по формуле

Можно проверить правильность составления обратной матрицы

А -1А = Е:

Теперь по формуле Х=А-1В находим матрицу Х

Получили решение (1;1;1)

2.4 Метод Гаусса.

Рассмотрим решение системы методом Гаусса на конкретном примере:

Метод Гаусса заключается в том, что с помощью элементарных преобразований система приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних, находятся все остальные.


Составим расширенную матрицу из коэффициентов при переменных и свободных членов, поменяв первую и вторую строку, чтобы а11=1

Умножим элементы первой строки на -2 и прибавим к соответствующим элементам второй строки, умножим элементы первой строки на -7 и прибавим к соответствующим элементам третьей строки. В результате получим в первом столбце, во второй и третьей строке 0

Умножим элементы второй строки на -9 а элементы третьей на 5 и полученные элементы второй строки прибавим к соответствующим элементам третьей строки, тогда получим:

Запишем преобразованные уравнения:

Теперь можно найти значения переменных, подставляя последовательно значение х3 во второе уравнение, найдем х2, подставим значения х2 и х3 в первое уравнение найдем х1

Ответ: (1;1;1)


2.4 (а) Методом Гаусса решить систему линейных уравнений и найти одно из базисных решений:

Решение:

Составим расширенную матрицу и с помощью элементарных преобразований приведем её к ступенчатому виду.

r(A)=2, число переменных n=4, следовательно система имеет бесконечное множество решений.

Определитель при переменных х1 и х2 , следовательно их можно взять за основные. Остальные, неосновные переменные х3 и х4 переносим в правые части уравнений: