Файл: Контрольная работа по дисциплине Химия Вопросы 3, 5, 16, 18, 24, 29, 32, 36, 40, 44.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.11.2023

Просмотров: 35

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Федеральное государственное автономное образовательное

учреждение высшего образования
«ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

кафедра «Химия»
КОНТРОЛЬНАЯ РАБОТА
по дисциплине

«Химия»

Вопросы 3, 5, 16, 18, 24, 29, 32, 36, 40, 44

Выполнил: ____________________

Группа: __________

1_курс

Номер зачетной книжки: №______

Проверил: ____________________


Омск

Содержание:
3. Периодическая система химических элементов Д.И. Менделеева.

5. Природа сил химического взаимодействия.

16. Окислительно-восстановительный эквивалент.

18. Термохимические законы.

24. Факторы, влияющие на скорость химической реакции.

29. Водные растворы. Способы выражения состава растворов.

32. Сильные и слабые электролиты.

36. Перегонка жидких смесей. Ректификация

40. Ряд стандартных электродных потенциалов

44. Законы Фарадея.

3. Периодическая система химических элементов Д.И. Менделеева.
Периодический закон и Периодическая система химических элементов Д. И. Менделеева – основа современной химии. Они относятся к таким научным закономерностям, которые отражают явления, реально существующие в природе, и поэтому никогда не потеряют своего значения.

Их открытие было подготовлено всем ходом истории развития химии, однако потребовалась гениальность Д. И. Менделеева, его дар научного предвидения, чтобы эти закономерности были сформулированы и графически представлены в виде таблицы.
На основе Периодического закона (свойства элементов периодически изменяются в соответствии с их атомным весом (зарядом ядра)) Д.И. Менделеев создал периодическую систему химических элементов, которая состояла из 7 периодов и 8 групп (короткопериодный вариант таблицы). В настоящее время чаще используется длиннопериодный вариант Периодической системы (7 периодов, 8 групп, отдельно показаны элементы - лантаноиды и актиноиды).

Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды), в больших периодах - 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Каждый период начинается с типичного металла, а заканчивается неметаллом (галогеном) и благородным газом.

Группы - это вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Короткопериодный вариант Периодической системы включал подгруппы элементов (главную и побочную).


Подгруппа - это совокупность элементов, являющихся безусловными химическими аналогами; часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы.

В А-группах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот - неметалл, а висмут - металл).

В Периодической системе типичные металлы расположены в IА группе (Li-Fr), IIА (Mg-Ra) и IIIА (In, Tl). Неметаллы расположены в группах VIIА (F-Al), VIА (O-Te), VА (N-As), IVА (C, Si) и IIIА (B). Некоторые элементы А-групп (бериллий Ве, алюминий Al, германий Ge, сурьма Sb, полоний Po и другие), а также многие элементы Б-групп проявляют и металлические, и неметаллические свойства (явление амфотерности).

Для некоторых групп применяют групповые названия: IА (Li-Fr) - щелочные металлы, IIА (Ca-Ra) - щелочноземельные металлы, VIА (O-Po) - халькогены, VIIА (F-At) -галогены, VIIIА (He-Rn) - благородные газы. Форма Периодической системы, которую предложил Д.И. Менделеева, называлась короткопериодной или классической. В настоящее время больше используется другая форма Периодической системы - длиннопериодная.

Периодический закон Д.И. Менделеева и Периодическая система химических элементов стали основой современной химии. Относительные атомные массы приведены по Международной таблице 1983 года. Для элементов 104-108 в квадратных скобках приведены массовые числа наиболее долгоживущих изотопов. Названия и символы элементов, приведенные в круглых скобках, не являются общепринятыми.
Изменение характеристик элементов в периодах слева направо (главная подгруппа):
· заряд ядер атомов увеличивается;
· радиус атомов уменьшается;
· электроотрицательность элементов увеличивается;
· количество валентных электронов увеличивается от 1 до 8 (равно номеру группы);
· высшая степень окисления увеличивается (равна номеру группы);
· число электронных слоев атомов не изменяется;
· металлические свойства уменьшается;
· неметаллические свойства элементов увеличивается;

· основные свойства гидроксидов постепенно ослабевают, кислотные усиливаются.
Изменение характеристик элементов в группе сверху вниз (главная подгруппа):
· заряд ядер атомов увеличивается;
· радиус атомов увеличивается;
· число энергетических уровней (электронных слоев) атомов; увеличивается (равно номеру периода);


· число электронов на внешнем слое атомов одинаково (равно номеру группы);
· прочность связи электронов внешнего слоя с ядром уменьшается;
· электроотрицательность уменьшается;
· металличность элементов увеличивается;
· неметалличность элементов уменьшается;

· основные свойства гидроксидов элементов усиливаются, кислотные ослабевают.

Элементы, которые находятся в одной подгруппе, являются элементами-аналогами, т.к. они имеют некоторые общие свойства (одинаковую высшую валентность, одинаковые формы оксидов и гидроксидов и др.). Эти общие свойства объясняются строением внешнего электронного слоя.
5. Природа сил химического взаимодействия.
Мельчайшей частицей вещества является молекула, образующаяся в результате взаимодействия атомов, между которыми действуют химические связи или химическая связь. Учение о химической связи составляет основу теоретической химии. Химическая связь возникает при взаимодействии двух (иногда более) атомов. Образование связи происходит с выделением энергии.

Химическая связь – это взаимодействие, которое связывает отдельные атомы в молекулы, ионы, кристаллы.

Химическая связь по своей природе едина: она имеет электростатическое происхождение. Но в разнообразных химических соединениях химическая связь бывает различного типа; наиболее важные типы химической связи – это ковалентная (неполярная, полярная), ионная, металлическая. Разновидностями этих типов связи являются донорно-акцепторная, водородная и др. Между атомами металлов возникает металлическая связь.

Химическая связь, осуществляемая за счет образования общей, или поделенной, пары или нескольких пар электронов, называется ковалентной. В образование одной общей пары электронов каждый атом вносит по одному электрону, т.е. участвует «в равной доле» (Льюис, 1916 г.). Ниже приведены схемы образования химических связей в молекулах H2, F2, NH3 и CH4. Электроны, принадлежащие различным атомам, обозначены различными символами.



В результате образования химических связей каждый из атомов в молекуле имеет устойчивую двух- и восьмиэлектронную конфигурацию.

При возникновении ковалентной связи происходит перекрывание электронных облаков атомов с образованием молекулярного электронного облака, сопровождающееся выигрышем энергии. Молекулярное электронное облако располагается между центрами обоих ядер и обладает повышенной электронной плотностью по сравнению с плотностью атомного электронного облака.




Осуществление ковалентной связи возможно лишь в случае антипараллельных спинов неспаренных электронов, принадлежащих различным атомам. При параллельных спинах электронов атомы не притягиваются, а отталкиваются: ковалентная связь не осуществляется. Метод описания химической связи, образование которой связано с общей электронной парой, называется методом валентных связей (МВС).
Основные положения МВС

  1. Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

  2. Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Химическая связь, возникающая за счет перехода электронов от атома к атому, называется ионной, а соответствующие молекулы химических соединений – ионными. Для ионных соединений в твердом состоянии характерна ионная кристаллическая решетка. В расплавленном и растворенном состоянии они проводят электрический ток, обладают высокой температурой плавления и кипения и значительным дипольным моментом.

Если рассматривать соединения элементов какого-либо периода с одним и тем же элементом, то по мере передвижения от начала к концу периода преимущественно ионный характер связи сменяется на ковалентный. Например, у фторидов 2-го периода LiF, BeF2, CF4, NF3, OF2, F2 степень ионности связи от фторида лития постепенно ослабевает и заменяется типично ковалентной связью в молекуле фтора.

Таким образом, природа химической связи едина: принципиального различия в механизме возникновения ковалентной полярной и ионной связей нет. Эти виды связи отличаются лишь степенью поляризации электронного облака молекулы. Возникающие молекулы отличаются длинами диполей и величинами постоянных дипольных моментов. В химии значение дипольного момента очень велико. Как правило, чем больше дипольный момент, тем выше реакционная способность молекул.

16. Окислительно-восстановительный эквивалент.
Эквивалентом называется весовое количество элемента, которое соединяется с восемью весовыми частями кислорода или с одной весовой частью водорода (точнее 1,008) или замещает их в соединениях.


Эквивалент элементов, образующих однозарядные ионы, равен атомному весу этих элементов. Элементы, обладающие Между атомным весом (А), эквивалентом (Э) и валентностью (В) существуют следующие соотношения:



Грамм-эквивалентом элемента называется количество вещества (выраженное в граммах), численно равное эквивалентному весу данного элемента.

Для нахождения окислительно-восстановительных грамм-эквивалентов необходимо грамм-молекулярный вес соединения разделить на число электронов, теряемых или приобретаемых восстановителем или окислителем (учитывая при этом среду). Например, перманганат калия в присутствии восстановителя в кислом растворе принимает 5 электронов. Его окислительно-восстановительный грамм-эквивалент в кислой среде равен:



Семивалентный марганец в концентрированном щелочном растворе принимает 1 электрон и восстанавливается до шестивалентного.

Поэтому в концентрированном щелочном растворе окислительно-восстановительный грамм-эквивалент равен:



В нейтральном и слабощелочном растворе семивалентный марганец принимает 3 электрона и восстанавливается до четырехвалентного. Окислительно-восстановительный грамм-эквивалент в данном случае равен



Из приведенного примера ясно, как нужно вычислять окислительно-восстановительные эквиваленты. В большинстве случаев для этого даже нет необходимости составлять полные уравнения реакций — достаточно знать, сколько электронов в данной реакции теряет восстановитель или принимает окислитель.

Следует заметить, что одно и то же вещество может участвовать в реакциях как обменных, так и окислительно-восстановительных.

Приведем еще несколько примеров вычисления окислительновосстановительных эквивалентов для некоторых соединений.

18. Термохимические законы.
Одним из важнейших законов природы является закон сохранения энергии (первое начало термодинамики). Энергия не возникает из ничего и не исчезает, она может лишь переходить из одного вида в другой, поэтому в изолированной системе запас энергии постоянен, независимо от протекающих в ней процессов.