Файл: Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Разделы дисциплины биологии и их значение для деятельности врача.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 789

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

  1. Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Разделы дисциплины биологии и их значение для деятельности врача.

Биология — на­ука о жизни. Она изучает жизнь как особую форму движения материи, за­коны ее существования и развития. Предметом изучения биологии являются живые организмы, их строение, функ­ции, их природные сообщества. Термин «биология», предложенный в 1802 г. впервые Ж. Б. Ламарком. Вместе с астрономией, физикой, химией, геоло­гией и другими науками, изучающими природу, биология относится к числу естественных наук. В общей системе знаний об окружающей мире другую группу наук составляют социальные, или гуманитарные науки, изучающие закономерности развития человеческо­го общества.

Современная биология представляет собой систему наук о живой природе. Биологические науки служат теорети­ческой основой медицины, агрономии, животноводства, а также всех тех отраслей производства, которые свя­заны с живыми организмами.

Методы биологических наук. Основ­ными частными методами в биологии являются: описательный, сравнитель­ный, исторический и эксперименталь­ный.

Для того чтобы выяснить сущность явлений, необходимо прежде всего со­брать фактический материал и описать его. Собирание и описание фактов были главным приемом исследования в ран­ний период развития биологии, кото­рый, однако, не утратил значения и в настоящее время.

Еще в XVIII в. получил распростра­нение сравнительный метод, позволяю­щий путем сопоставления изучать сход­ство и различие организмов и их час­тей. На принципах этого метода была основана систематика, сделано одно из крупнейших обобщений — создана клеточная теория. Применение сравни­тельного метода в анатомии, палеон­тологии, эмбриологии, зоогеографии способствовало утверждению эволю­ционных представлений. Сравнитель­ный метод перерос в исторический, но не потерял значения и сейчас.

Исторический метод выясняет за­кономерности появления и развития организмов, становления их структуры и функции. Утверждением в биологии исторического метода наука обязана Дарвину.

Экспериментальный метод исследо­вания явлений природы связан с ак­тивным воздействием на них путем постановки опытов (экспериментов) в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот ме­тод позволяет изучать явления изоли­рованно и добиваться повторяемости их при воспроизведении идентичных условий. Эксперимент обеспечивает не только более глубокое, чем другие ме­тоды, проникновение в сущность явле­ний, но и непосредственное овладение ими. Высшей формой эксперимента является моделирование изучаемых про­цессов.


Место и задачи биологии в системе подготовки врача. Важность изучения биологии для медика определяется тем, что биология — это прежде всего осно­ва медицины. «Медицина, взятая в пла­не теории,— это прежде всего общая биология»,— писал один из крупней­ших теоретиков медицины И. В. Да­выдовский (1887—1968). Успехи меди­цины связаны с биологическими иссле­дованиями, поэтому врач постоянно должен быть осведомлен о новейших достижениях биологии. Достаточно привести несколько примеров из ис­тории науки, чтобы убедиться з тес­ной связи успехов медицины с открыти­ями, казалось бы, в чисто теоретических областях биологии. Исследования Л. Пастера (1822—1895), опубликован­ные в 1862 г. и доказавшие невоз­можность самопроизвольного заро­ждения жизни в современных услови­ях, открытие микробного происхожде­ния процессов гниения и брожения произвело переворот в медицине и обеспечило развитие хирургии. В прак­тику были введены сначала антисеп­тика (предохранение заражения раны посредством химических веществ), а за­тем асептика (предупреждение загряз­нения путем стерилизации предметов, соприкасающихся с раной). Это же открытие послужило стимулом к поис­кам возбудителей заразных болезней, а с обнаружением их связаны разра­ботка профилактики и рационального лечения.

Изучение физиологических и био­химических закономерностей, откры­тие клетки и изучение микроскопиче­ского строения организмов позволило глубже понять причины возникнове­ния болезненного процесса, способ­ствовали внедрению в практику новых методов диагностики и лечения. Но­вейшие исследования в области зако­номерностей деления клеток и кле­точной дифференцировки имеют пря­мое отношение как к проблеме регенера­ции, т. е. восстановлению поврежден­ных органов, так и к проблеме злока­чественного роста, борьбе с онкологиче­скими заболеваниями. Изучение И. И. Мечниковым (1845— 1916) процессов пищеварения у низ­ших из многоклеточных организмов привело к открытию фагоцитоза и спо­собствовало объяснению явлений имму­нитета, сопротивляемости организма возбудителям болезни. И современные представления об иммунитете опирают­ся на биологические исследования. Рас­крытие механизмов иммунитета необ­ходимо также для преодоления ткане­вой несовместимости, проблемы очень важной для восстановительной хирур­гии, с которой связаны вопросы транс­плантации органов.

Исследования И. И. Мечникова по межвидовой борьбе у микроорганизмов явились предпосылкой открытия ан­тибиотиков, используемых для лечения многих болезней, а массовое про­изводственное получение антибиоти­ков стало возможно лишь благодаря применению методов генетики для со­здания высокопродуктивных штаммов продуцентов антибиотиков.



Советский исследователь Б. П. Токин открыл у растений летучие веще­ства — фитонциды, нашедшие широкое применение в медицине.

Следует помнить, что структуры и функции человеческого организма, в том числе защитные механизмы,—результат длительных эволюционных преобра­зований предшествующих форм. По­этому в основе патологических процес­сов также лежат общебиологические закономерности. Необходимой предпо­сылкой для понимания сущности па­тологического процесса является зна­ние биологии. Филогенетический принцип, учиты­вающий эволюцию органического мира, может подсказать правильный подход к изучению патологического процесса, а также для испытания новых лекар­ственных препаратов. Этот же метод помогает понять происхождение ано­малий и уродств, найти наиболее ра­циональные пути реконструкции орга­нов и т.

Большое число болезней имеет наслед­ственную природу. Профилактика и ле­чение их требуют знаний генетики. Но и ненаследственные болезни протека­ют неодинаково и требуют различного лечения в зависимости от генетической конституции человека, чего не может не учитывать врач. Многие врожденные аномалии возникают вследствие воздей­ствия неблагоприятных условий среды. Предупредить их — задача врача, во­оруженного знаниями биологии раз­вития организмов.

Здоровье людей в большой мере за­висит от состояния окружающей среды. Знание биологических закономерностей необходимо для научно обоснованного отношения к природе, охране и ис­пользованию ее ресурсов, в том числе и с целью лечения и профилактики забо­леваний.

  1. Развитие представлений о сущности жизни. Определение жизни. Гипотезы о происхождении жизни. Главные этапы возникновения и развития жизни. Иерархические уровни организации жизни.

Уровня организации живого. В серединеХХ в. в биологии сложились представления об уровнях организа­ции как конкретном выражении упо­рядоченности, являющейся одним из основных свойств живого (биологические микросистемы: мол., субклеточ., клеточ.; биолог.мезосист.:тк., ор., орг.; биол.макросис.: поп.-вид., биоценотич.).

Живое на нашей планете представле­но в виде дискретных единиц — орга­низмов, особей. Каждый организм, с одной стороны, состоит из единиц под­чиненных ему уровней организации (ор­ганов, клеток, молекул), с другой — сам является единицей, входящей в состав надорганизменных биологиче­ских макросистем (популяций, биоце­нозов, биосферы в целом).


На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организа­ция (упорядоченность), обмен веществ, энергии и информации и т.д. Характер проявления основных свойств жизни на каждом из уровней имеет качественные особенности, упорядоченность. Как из­вестно, в результате обмена веществ, энергии и информации устанавливает­ся единство живого и среды, но понятие среды для разных уровней различно. Для дискретных единиц молекулярно­го и надмолекулярного (субклеточно­го) уровней окружающей средой явля­ется внутренняя среда клетки; для кле­ток, тканей и органов — внутренняя среда организма. Внешняя живая и неживая среда на этих уровнях орга­низации воспринимается через измене­ние внутренней среды, т. е. опосредо­ванно. Для организмов (индивидуумов) и их сообществ среду составляют орга­низмы того же и других видов и условия неживой природы.

Существование жизни на всех уров­нях подготавливается и определяется структурой низшего уровня. Характер клеточного уровня организации опреде­ляется молекулярным и субклеточным уровнями, организменный— клеточ­ным, тканевым, органным, видовой (популяционный) — организменным и т. д. Следует отметить большое сходство дискретных единиц на низших уров­нях и все возрастающее различие на высших уровнях.
Молекулярный уровень. На молекулярном уровне обнаружива­ется удивительное однообразие диск­ретных единиц. Жизненный субстрат для всех животных, растений, вирусов составляет всего 20 одних н тех же ами­нокислот и 4 одинаковых азотистых основания, входящих в состав молекул нуклеиновых кислот. Близкий со­став имеют липиды и углеводы. У всех организмов биологическая энергия за­пасается в виде богатых энергией аденозинфосфорных кислот (АТФ, АДФ, АМФ). Наследственная информация у всех заложена в молекулах ДНК (ис­ключение составляют лишь РНК-содержащие вирусы), способной к саморепро­дукции. Реализация наследственной информации осуществляется при уча­стии молекул РНК, синтезируемых на матричных молекулах ДНК. В связи с тем, что с молекулярными структурами связано хранение, изменение и реали­зация наследственной информации, этот уровень иногда называют молекулярно-генетическим.

Клеточный уровень. На клеточном уровне также отмечается однотипность всех живых организмов. Клетка является основной самостоятель­но функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уров-не возможны биосинтез и реализация наследственной информации. Клеточ­ный уровень у одноклеточных организ­мов совпадает с организменным. В ис­тории жизни на нашей планете был такой период (первая половина архейской эры), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоце­нозы и биосфера в целом.


Тканевый уровень. Сово­купность клеток с одинаковым типом ор­ганизации составляет ткань. Тканевый уровень возник вместе споявлением многоклеточных животных и расте­ний, имеющих дифференцированные ткани. У многоклеточных организмов он развивается в период онтогенеза. Большое сходство между всеми орга­низмами сохраняется на тканевом уров­не. Совместно функционирующие клет­ки, относящиеся к разным тканям, со­ставляют органы. Всего лишь 5 основ­ных тканей входят в состав органов всех многоклеточных животных и 6 ос­новных тканей образуют органы рас­тений.

Организменный (онтоге­нетический) уровень. На организменном уровне обнаруживает­ся труднообозримое многообразие форм. Разнообразие организмов, относящих­ся к разным видам, да и в пределах одного вида,— следствие не разнооб­разия дискретных единиц низшего по­рядка, а все усложняющихся их про­странственных комбинаций, обуслов­ливающих новые качественные особен­ности. В настоящее время на Земле обитает более миллиона видов живот­ных и около полумиллиона видов выс­ших растений. Каждый вид состоит из отдельных индивидуумов.

Особь — организм как целое — эле­ментарная единица жизни. Вне особей в природе жизнь не существует. На организменном уровне протекают про­цессы онтогенеза, поэтому уровень этот называют еще онтогенетическим. Нервная и гуморальная системы осу­ществляют саморегуляцию в организ­ме и обусловливают определенный гомеостаз.

Популяционно-видовой уровень. Совокупность организ­мов (особей) одного вида, населяющих определенную территорию, свободно между собой скрещивающихся, состав­ляет популяцию. Популяция — это элементарная единица эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биогеоценозов.
Биоценотический и биосферный уровни. Биогеоценозы — исторически сложившиеся ус­тойчивые сообщества популяций раз­ных видов, связанных между собой и с окружающей неживой природой обме­ном веществ, энергии и информации. Они являются элементарными систе­мами, в которых осуществляется ве­щественно-энергетический круговорот, обусловленный жизнедеятельностью организмов. Биогеоценозы составля­ют биосферу и обусловливают все процессы, протекающие в ней.

Только при комплексном изучении явлений жизни на всех уровнях можно получать целостное представление об особой (биологической) форме суще­ствования материи.

Представление об уровнях организа­ции жизни имеет непосредственное отношение к основным принципам меди­цины. Оно заставляет смотреть на здо­ровый и больной человеческий орга­низм как на целостную, но в то же вре­мя сложную иерархически соподчинен­ную систему организации. Знание структур и функций на каждом из них помогает вскрыть сущность болезнен­ного процесса. Учет той человеческой популяции, к которой относится данный индивидуум, может потребоваться, на­пример, при диагностике наследствен­ной болезни. Для вскрытия особенно­стей течения заболевания и эпидеми­ческого процесса необходимо также учи­тывать особенности биоценотической и социальной среды. Имеет ли дело врач с отдельным больным или челове­ческим коллективом, он всегда ос­новывается на комплексе знаний, полученных на всех уровнях биоло­гических микро-, мезо- и макросис­тем.