Файл: План Введение Общие сведения Эксплуатационные свойства. Заключение Введение.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.02.2024

Просмотров: 78

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

План

  1. Введение

  2. Общие сведения

  3. Эксплуатационные свойства.

  4. Заключение

Введение

Изучая строительные материалы, их классифицируют по отраслям применения в строительстве, например кровельные (рубероид, асбестоцементный шифер, черепица); стеновые (кирпич, керамическая камни, ячеистые и шлакобетонные блоки, деревянный брус).

Для повышения эффективности строительства важным является снижение массы строительных конструкций. Это способствует снижению затрат на их перевозку, уменьшению мощности подъемно-транспортных средств, укрупнению строительных конструкций. Это направление реализуется увеличением производства легких металлических конструкций, легких бетонов на пористых заполнителях и ячеистых бетонов, а также производства особенно легких заполнителей, материалов из пластмасс и тому подобное.

Рост поверхности строящихся зданий, степени насыщенности их инженерным и технологическим оборудованием требует увеличения выпуска конструкций с высокой несущей способностью, в том числе с предварительно напряженной арматурой. Для защиты ограждающих конструкций от климатических факторов необходимые материалы из-малыми водопоглощением и теплопроводностью, высокими морозо- и огнестойкостью. Повышение уровня внутреннего благоустройства зданий и гигиенических требований по ним требует разработки специальных материалов для канализации и водостоков, которые имеют высокую коррозионную стойкость и водонепроницаемость.

Повышение эстетических требований к зданиям способствовало расширению ассортимента отделочных материалов.

Строительные материалы выполняют свои функции только тогда, когда они прогрессивные, то есть снижают материалоемкость конструкций, обеспечивая нужную прочность, если их изготовления уменьшает за траты труда, топлива и электроэнергии.

В современном строительстве целесообразно как можно шире использовать местные материалы, применяя для их изготовления техногенные отходы других производств (шлаки, золы, опилки и т.д.). Благодаря этому удается устранить проблему доставки строительных материалов на объекты за тысячи километров. Местные материалы (кирпич, дерево, природный камень) успешно заменяют железобетон, значительно удешевляют строительство, способствуют решению экологической проблемы и дают существенную экономию.


Выбирая материал, нужно учитывать класс здания или сооружения, его конструктивное назначение, а также действие внешних факторов (физических, химических и т.д.), под влиянием которых изменяются свойства строительных материалов.

В зависимости от назначения (для дорожных покрытий, теплоизоляции, гидроизоляции и т.д.) строительные материалы характеризуются определенным комплексом свойств, которые чаще всего задают в виде числовых величин, установленных нормативными документами — межгосударственными и государственными стандартами, техническими условиями или строительными нормами. Однако даже материалы одной по назначению группы (например, облицовочные), используемые в различных условиях (облицовка операционных, цехов химических предприятий, гидротехнических сооружений и т.п.), должны кроме общих для данной группы свойств иметь еще и специфические: повышенную гигиеничность, химическую стойкость, водостойкость тому подобное.

Свойства строительных материалов в значительной степени зависят от их структуры, химического, минералогического и фазового состава, на которые, в свою очередь, влияют условия образования их в природе или свойства сырья, а также особенности технологии изготовления и обработки искусственных строительных материалов.

Общие сведения

Под свойствами материалов понимают их способность реагировать определенным образом на отдельные или совокупные внешние и внутренние воздействия – механические, химические, биологические и др. Они характеризуют собой общность или различие одних материалов по отношению к другим и проявляются в процессе переработки, применения, эксплуатации, испытания или сравнения. Например, действие на материал отрицательных температур характеризует его морозостойкость, огня – огнестойкость, сопротивляться воздействию нагрузок – прочность, упругость и др. Количественно свойства определяются при испытании (реже расчетным путем) и выражаются физическими величинами в соответствии с действующими нормативными документами. Различают простые и сложные свойства.

Простые свойства нельзя разделить на другие. Например, масса материала не может быть представлена другими более простыми свойствами. Сложное свойство может быть разделено на два и более простых свойств. Например, долговечность или надежность материала характеризуются многими факторами в условиях эксплуатации (действие влаги, температуры, ветра, солнечной радиации, нагрузки и др.).



Строительные материалы обладают комплексом различных свойств, которые определяют их качество, области рационального применения и возможность сочетания с другими материалами. Например, для несущих конструкций материалы должны хорошо сопротивляться разрушению и изменению формы под действием внешних нагрузок, т.е. обладать достаточной прочностью, упругостью, быть эстетичными и долговечными. В ограждающих конструкциях (наружных стенах) применяют материалы с низкой теплопроводностью и звукопроницаемостью. К материалам для устройства кровли зданий и сооружений предъявляются требования по водонепроницаемости, атмосферостойкости и т.д.

По совокупности признаков различают физические, механические, химические, технологические, эксплуатационные, специальные и другие свойства. Все эти свойства взаимосвязаны между собой. Например, от структурно-физических свойств зависят механические, технологические, акустические, от механических – эксплуатационные, от технологических – механические, эстетические и др.

Эксплуатационные свойства

Свойства строительных материалов не остаются постоянными во времени, а постепенно изменяются. Причиной этому служат различные механические, химические, биологические и другие воздействия окружающей среды в процессе эксплуатации. Такие изменения могут происходить медленно (например, разрушение горных пород) и сравнительно быстро (например, коррозия металлов, бетона). Поэтому материалы должны обладать не только комплексом положительных свойств, но и сохранять их длительное время в процессе эксплуатации в конструкциях и сооружениях.

Водостойкость – это способность материала противостоять растворяющему, адсорбционному и химическому воздействию воды. Практически это степень снижения прочности материала при предельном его водонасыщении. Численно характеризуется коэффициентом размягчения:



где Rнас – предел прочности при сжатии материала в насыщенном водой состоянии, МПа; Rсух – предел прочности при сжатии сухого материала, МПа (СТБ 4.204).

Снижение прочности насыщенных водой материалов обусловлено частичным разрушением структуры вследствие разрыва наиболее слабых химических связей. Величина коэффициента размягчения для разных материалов колеблется от 0 (необожженная глина) до 1,0 (стекло, битум, сталь). Критерием водостойкости принято считать 20%-е снижение прочности, т.е. материалы с
Кразм  ≥ 0,8 относятся к водостойким. При Кразм < 0,8 материалы неводостойки и не применяются в воде и в сырых условиях. Водостойкость материалов можно повысить путем пропитки или нанесения на их поверхность гидрофобных покрытий.

Морозостойкость – способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности, т.е. на заданном уровне. Основной причиной разрушения является вода, которая, замерзая в порах, увеличивается в объеме примерно на 9%, а также ряд дополняющих это действие явлений. Если поры заполнены водой, то возникает давление на стенки пор, достигающее иногда нескольких десятков мегапаскалей (до 200 МПа) и приводящее к разрушению материала. Обычно эти разрушения начинаются с поверхности, а затем распространяются внутрь материала. Хотя во многих пористых материалах вода и не заполняет более 90% объема пор, т.е. образующийся лед имеет свободное пространство для расширения, тем не менее материал разрушается в результате многократного попеременного замораживания и оттаивания изза дополнительно проявляющихся знакопеременных деформационных явлений, миграции жидкости и др.

Материалы на морозостойкость испытывают в холодильных камерах путем замораживания насыщенных водой образцов при температуре –15…–17 °С и последующего их оттаивания при температуре +20 °С. Такой выбор температуры замораживания вызван тем, что в мелких порах и капиллярах вода замерзает при температурах значительно ниже 0 °С (до –10 °С). По числу выдерживаемых циклов замораживания и оттаивания материалы подразделяют на марки. Марка состоит из буквенного обозначения F (от англ. Freeze – замерзать) и численного значения, которое выражает количество циклов попеременного замораживания и оттаивания, выдерживаемых образцами без снижения прочности на 5…25% и потери массы на 3…5% в зависимости от назначения материала. Допустимые значения (пределы) потери массы и прочности приводятся в стандартах на конкретный материал. Нормативными документами приняты следующие марки строительных материалов по морозостойкости – F 10…F 300 (10, 15, 25, 35, 50, 100, 150, 200) и более.

Морозостойкость материала зависит от плотности, прочности, пористости и степени насыщения водой. Пористые материалы являются морозостойкими, если они имеют закрытые поры. Плотные материалы (гранит, стекло и др.), как правило, морозостойки. Морозостойкость материалов можно повысить путем увеличения его прочности, уменьшения пористости, создания закрытых пор в материале, а так же за счет использования гидрофобизирующих веществ при изготовлении материала.


Однако понятие «морозостойкость» может по разному оцениваться и различаться для разных материалов. Для металлов, композиционных материалов на основе битума и полимеров под морозостойкостью понимают их способность сохранять эксплуатационные (например, пластические) свойства на морозе. Характеризуется наименьшей температурой, при снижении до которой сохраняется требуемый уровень какого-либо свойства (например, материал еще не становится хрупким и его можно деформировать без образования трещин). Для некоторых материалов количественной характеристикой морозостойкости является коэффициент, который определяется как отношение значений какого-либо показателя свойств при низкой и комнатной температурах. Поэтому не существует однозначного определения маркам или классам различных материалов по морозостойкости, а также различаются методики их испытаний.

Термическая стойкость – способность материала выдерживать или сохранять свои физико-механические свойства при чередовании резких тепловых изменений (нагревание и охлаждение). Это свойство зависит от однородности материала и температурного коэффициента расширения. Чем более однородный материал, тем он, как правило, более термостойкий. Например, каменные материалы из мономинеральных горных пород (мрамор) более термостойкие, чем из полиминеральных (гранит). Чем меньше коэффициент термического расширения, тем выше термическая стойкость материала.

Пожарно-технические свойства. Основными техническими показателями пожарной опасности строительных материалов, изделий и конструкций являются горючесть, воспламеняемость, распространение пламени по поверхности, дымообразующая способность, токсичность продуктов горения и огнестойкость (СНБ 2.02.01, СТБ ЕN 13501).

По горючести строительные материалы подразделяют на негорючие и горючие. К негорючим материалам относят в основном минеральные материалы (бетоны, растворы, стекло, керамика и др.).

Горючесть устанавливается по содержанию в материале органических веществ. Если органики более 2% по массе, то материал без предварительной проверки относят к горючим и оценивают его степень горючести.

Горючие материалы (на основе органических растительных компонентов – древесина, пластмассы (в абсолютном большинстве) и др.) в зависимости от параметров горючести подразделяются на слабо горючие (Г1), умеренно горючие (Г2), нормально горючие (Г3) и сильно горючие (Г4). Например, материалы типа Г1 и Г2 при действии открытого огня тлеют, обугливаются, а после устранения источника огня тление прекращается (ГОСТ 30244, СТБ EN ISO 1182). К таким материалам относят фибролит, арболит, древесину, пропитанную антипиренами и др.