ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.03.2024

Просмотров: 256

Скачиваний: 13

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Рисунок 1.9 - Форма таблицы исходных данных и результатов расчетов сужающих устройств, не поставляемых промышленностью.

29

2. СТРУКТУРНЫЕ СХЕМЫ СИСТЕМ ИЗМЕРЕНИЯ И АВТОМАТИЗАЦИИ

2.1. СТРУКТУРА СИСТЕМ УПРАВЛЕНИЯ

При разработке проекта автоматизации в первую очередь необходимо решить, с каких мест те или иные участки объекта будут управляться, где будут размещаться пункты управления, операторские помещения, какова должна быть взаимосвязь между ними, т.е. необходимо решить вопросы выбора структуры управления. Под структурой управления понимается совокупность частей автоматической системы, на которые она может быть разделена по определенному признаку, а также пути передачи воздействий между ними. Графическое изображение структуры управления называется структурной схемой. Хотя исходные данные для выбора структуры управления и ее иерархии с той или иной степенью детализации оговариваются заказчиком при выдаче задания на проектирование, полная структура управления должна разрабатываться проектной организацией.

Выбор структуры управления объектом автоматизации оказывает существенное влияние на эффективность его работы, снижение относительной стоимости системы управления, ее надежности, ремонтоспособности и т.д.

Система управления должна обеспечивать разные уровни управления объектом автоматизации, т.е. должна состоять из нескольких пунктов управления, в той или иной степени взаимосвязанных в зависимости от важности регулируемых параметров, круга работников эксплуатационного персонала, которым необходимо знать их значения для осуществления оптимального управления объектом.

С учетом изложенного, структуры управления объектом автоматизации могут быть в частных случаях одноуровневыми централизованными, одноуровневыми децентрализованными, многоуровневыми. Одноуровневые системы управления, в которых управление объектом осуществляется с одного пункта управления, называются централизованными. Одноуровневые системы, которые обеспечивают управление отдельных частей сложного объекта из самостоятельных пунктов управления, называются децентрализованными. В многоуровневых системах управления, задачи управления решаются на первом уровне, а на более высоком уровне обеспечивают решение задач оптимизации, архивирования, расчета техникоэкономических показателей.

30


Структурные схемы одноуровневых централизованных и децентрализованных систем приведены на рисунках 2.1- 2.2.

Объект

управления

ЦПУ

Уровень управления

Рисунок 2.1- Пример одноуровневой централизованной системы

Операторская Операторская

Сеть передачи данных

Локальная

 

Локальная

 

Локальная

технологи-

 

технологи-

 

технологи-

 

ческая

 

 

 

ческая

 

 

 

ческая

 

станция

 

 

 

станция

 

 

 

станция

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Технологический объект управления

Рисунок 2.2 - Пример одноуровневой децентрализованной системы управления

31


Одноуровневые централизованные системы применяются в основном для управления относительно несложными объектами или объектами, расположенными на небольшой территории.

Большинство промышленных объектов в настоящее время представляет собой сложные комплексы, отдельные части которых расположены на значительном расстоянии друг от друга. Кроме основных технологических установок, объекты имеют большое число вспомогательных установок-подобъектов (промышленные котельные, компрессорные, насосные станции оборотного водоснабжения, котлы-утилизаторы, очистные сооружения и т.п.), которые необходимы для обеспечения технологических установок всеми видами энергии, а также для утилизации и нейтрализации остаточных продуктов технологического процесса.

Если управление такого комплексного объекта построить по одноуровневой централизованной системе, то намного усложнятся коммуникации системы управления, резко возрастут затраты на ее сооружения и эксплуатацию, центральный пункт управления получается громоздким. Удаленность пункта управления от того или иного вспомогательного подобъекта затрудняет принятие оперативных мер по устранению тех или иных неполадок. В этом случае более приемлемой становится одноуровневая децентрализованная система управления.

Однако с помощью одноуровневых систем не всегда представляется возможным оптимально решить вопросы управления технологическими процессами. Это в первую очередь относится к сложным технологическим процессам. Тогда целесообразно переходить к многоуровневым системам управления. В качестве примера на рисунке 2.3 представлена трехуровневая система управления сложным объектом с разветвленными технологическими связями между установками. Отдельные технологические установки управляются децентрализовано с локальных станций управления 1-7. Это первый уровень управления, на котором решаются задачи контроля и регулирования технологических параметров. Второй уровень, представляет собой автоматизированное рабочие место оператора и позволяет выполнять широкий круг задач, в том числе вести дистанционное управление процессом, решать задачи оптимального управления, ведения архива. На третьем уровне рассчитываются техникоэкономические показатели, генерируются отчеты, которые могут передаваться в другие системы управления.

Объект управления

32


Рисунок 2.3 - Пример трехуровневой системы управления: I-III – уровни управления

Для первого уровня при проектировании целесообразно предусматривать три режима управления:

1)командами, поступающими от уровня более высокого ранга;

2)командами, формирующимися непосредственно на первом уровне;

3)командами, поступающими как с уровня более высокого ранга, так и формирующимися непосредственно на первом уровне.

Для уровня второго ранга и выше возможны четыре режима работы:

1)аппаратура данного i-го ранга принимает и реализует в управляющее воздействие команды (i+1)-го ранга;

2)команды формируются непосредственно на аппаратуре i-го ранга;

3)все функции управления с i-го ранга передаются на аппаратуру (i-1)-го ранга;

4)часть команд на аппаратуру i-го ранга поступает с (i+1)-го ранга (часть

функций управления передана на аппаратуру (i+1)-го ранга), часть ко-

33

манд формируется на i-м ранге.

Перевод аппаратуры с режима 1 на режим 2 осуществляется по команде или с разрешения оператора системы вышестоящего ранга.

Передача функций управления тем или иным параметром на нижестоящий ранг осуществляется только после приема команды о передаче и подтверждения оператора системы нижестоящего ранга о готовности к принятию на себя тех или иных функций управления.

Многоуровневая структура системы управления обеспечивает ее надежность, оперативность, ремонтопригодность. При этом легко решается оптимальный уровень централизации управления с минимальным количеством средств технологического контроля, управления и линий связи между ними.

АСУ ТП подразделяются на уровни классов 1, 2 и 3. К классу 1 (АСУ ТП нижнего уровня) относятся АСУ ТП, управляющие агрегатами, установками, участками производства, не имеющие в своем составе других АСУ ТП. К классу 2 (АСУ ТП верхнего уровня) относятся АСУ ТП, управляющие группами установок, цехами, производствами, в которых отдельные агрегаты (установки) имеют свои локальные системы управления, не оснащенные АСУ ТП класса 1. К классу 3 (АСУ ТП многоуровневые) относятся АСУ ТП, объединяющие в своем составе АСУ ТП классов 1,2 и реализующие согласованное управление отдельными технологическими установками или их совокупностью (цехом, производством).

Построение систем автоматизации по уровням управления определяется как требованиями снижения трудозатрат на их реализацию, так и целями (критериями) управления технологическими объектами.

Система автоматизации структурно может быть представлена по-разному.

Вобщем случае любая система может быть представлена конструктивной,

функциональной или алгоритмической структурой. В конструктивной струк-

туре системы каждая ее часть представляет собой самостоятельное конструктивное целое. Примерами изображения конструктивных структурных схем системы автоматизации могут служить рисунки 2.1-2.3.

Вфункциональной структуре каждая часть предназначена для выполнения определенной функции, в алгоритмической – для выполнения определенного алгоритма преобразования входной величины, являющегося частью алгоритма функционирования системы в целом.

Впроектах автоматизации изображают конструктивные структурные схемы с элементами функциональных признаков.

34


Полные сведения о функциональной структуре с указанием локальных контуров регулирования, каналов управления и технологического контроля приводится в схемах автоматизации (см. разд. 3).

Внастоящее время разработано немало проектов АСУ ТП, различной структуры, которые можно отнести к выше перечисленным классам.

Взависимости от первичных исходных данных:

объема информации по процессу;

типа технологического процесса (непрерывный, периодический, смешенный);

топологии объекта;

особых условий протекании процесса;

применяемых технических средств автоматизации могут быть разработаны различные структуры АСУ ТП.

Все компоненты, расположенные на различных уровнях АСУ ТП, должны быть объединены цифровыми линиями связи.

Выбор типа сети определяется типом используемых технических средств, требованием к быстродействию, надежности. В настоящее время эта область достаточно быстро развивается. Многие фирмы поставляют на рынок средств автоматизации все более надежные и универсальные типы сетей. Поэтому при выборе сетевых решений необходимо учитывать современные тенденции в данной области.

Многие проекты автоматизированных систем контроля и управления (СКУ) для большого спектра областей применения позволяют выделить обобщенную схему их реализации, представленную на рисунке.

Как правило, это двухуровневые системы, так как именно на этих уровнях реализуется непосредственное управление технологическими процессами. Специфика каждой конкретной системы управления определяется используемой на каждом уровне программно - аппаратной платформой.

35

Рисунок 2.4 - Обобщенная структурная схема АСУ ТП

1.Нижний уровень - уровень объекта (контроллерный) - включает различные датчики для сбора информации о ходе технологического процесса, электроприводы и исполнительные механизмы для реализации регулирующих и управляющих воздействий. Датчики поставляют информацию локальным программируемым логическим контроллерам (PLC - Programming Logical Controoller), которые могут выполнять следующие функции:

сбор и обработка информации о параметрах технологического процесса;

управление электроприводами и другими исполнительными механизмами;

решение задач автоматического логического управления и др.

Так как информация в контроллерах предварительно обрабатывается и частично используется на месте, существенно снижаются требования к пропускной способности каналов связи.

36