ВУЗ: Вятская государственная сельскохозяйственная академия
Категория: Ответы на вопросы
Дисциплина: Биология
Добавлен: 19.02.2019
Просмотров: 3458
Скачиваний: 7
Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами.
Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков.
Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи.
Функции белков:
1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);
2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);
3) двигательная (миозин участвует в сокращении мышц);
4) запасная (альбумины яйца);
5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);
6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);
7) регуляторная (регуляторные белки определяют активность генов);
8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);
9) белки-ферменты катализируют все химические реакции в организме;
10) энергетическая (при распаде 1 г белка выделяется 17 кДж энергии).
10. Строение и биологическое значение жиров и углеводов в организме.
Углеводы. Это моно- и полимеры, в состав которых входит углерод, водород и кислород в соотношении 1:2:1.
Функции углеводов:
1) энергетическая (при распаде 1 г углеводов выделяется 17,6 кДж энергии);
2) структурная (целлюлоза, входящая в состав клеточной стенки у растений);
3) запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).
Жиры. Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.
Функции липидов:
1) энергетическая (при распаде 1 г липидов образуется 38,9 кДж энергии);
2) структурная (фосфолипиды клеточных мембран, образующие липидный бислой);
3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);
4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);
5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);
6) теплоизолирующая (подкожная клетчатка сохраняет тепло).
11. Нуклеиновые кислоты, их строение, значение, локализация в клетке
Нуклеиновые кислоты — это фосфорсодержащие биополимеры, мономерами которых являются нуклеотиды.
Существует 2 вида нуклеиновых кислот — дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеотиды, входящие в состав ДНК, содержат углевод, дезоксирибозу, в состав РНК — рибозу.
В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, – аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований – аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований.
Молекула ДНК может включать огромное количество нуклеотидов – от нескольких тысяч до сотен миллионов. В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей, соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.
12. Кодирование и реализация биологической информации в клетке. Кодовая система ДНК.
Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.
Генетический код— это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.
Св-ва ген. кода:
1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.
2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)
3) Код однозначен — каждый кодон шифрует только 1 аминоксилоту
4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.
5) Внутри гена нет знаков препинания.
6) Код универсален. Генетический код един для всех живых на земле существ.
Транскрипция — это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК — носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам — местам сборки белков — высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК — полимеразой. В процессе транскрипции можно выделить 4 стадии:
1) Связывание РНК-полимеразы с промотором,
2) инициация — начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,
3) элонгация — рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,
4) терминация — завершения синтеза и-РНК. Промотр — площадка для РНК-полимеразы. Оперон — часть одного гена ДНК.
Синтез
белка на рибосомах называется трансляцией.
Этапы трансляции следующие:
1.
иРНК
приходит к рибосомам для последующей
расшифровки.
2.
Аминокислоты,
находящиеся в цитоплазме, присоединяются
к тРНК с помощью ферментов. Каждая тРНК
несет антикодон — триплет, комплементарный
кодону иРНК.
3.
При
поступлении аминокислоты на рибосому
антикодон узнает свой кодон и РНК, и
аминокислота присоединяется к
полипептидной цепи.
4.
тРНК
уходит за следующей аминокислотой.
5.
Синтез
белка заканчивается, когда на рибосоме
оказывается один из стоп-кодонов.
13. Строение и функции клеточных мембран. Способы переноса веществ через биологические мембраны диффузии, активный и пассивный транспорт, эндо- и экзоцитоз. Клеточное соединение (контакты)
Наружная клеточная мембрана присуща всем клеткам (животным и растительным) и состоит из молекул липидов и белка. В настоящее время распространена жидкостно-мозаичная модель построения клеточной мембраны. Согласно этой модели молекулы липидов расположены в два слоя, причем своими водоотталкивающими концами они обращены друг к другу, а водорастворимыми – к периферии. В липидный слой встроены белковые молекулы. Некоторые из них находятся на внешней или внутренней поверхности липидной части, другие – частично погружены или пронизывают мембрану насквозь.
Функции мембран:
- защитная, пограничная, барьерная;
- транспортная;
- рецепторная – осуществляется за счет белков – рецепторов, которые обладают избирательной способностью к определенным веществам (гормонам, антигенам и др.), вступают с ними в химические взаимодействия, проводят сигналы внутрь клетки;
- участвуют в образовании межклеточных контактов;
- обеспечивают движение некоторых клеток (амебовидное движение).
Пассивный транспорт веществ происходит без затраты энергии. Примером такого транспорта является диффузия и осмос, при которых движение молекул или ионов осуществляется из области с высокой концентрацией в область с меньшей концентрацией, например, молекул воды.
Активный транспорт – при этом виде транспорта молекулы или ионы проникают через мембрану против градиента концентрации, для чего необходима энергия. Примером активного транспорта служит натрий-калиевый насос, который активно выкачивает натрий из клетки и поглощает ионы калия из внешней среды, перенося их в клетку.
Транспорт веществ может осуществляться путем эндоцитоза и экзоцитоза.
Эндоцитоз – проникновение веществ в клетку, экзоцитоз – из клетки.
При эндоцитозе плазматическая мембрана образует впячивание или выросты, которые затем обволакивают вещество и отшнуровываясь, превращаются в пузырьки.
Различают два типа эндоцитоза:
1)фагоцитоз- поглощение твердых частиц (клетки фагоциты),
2)пиноцитоз – поглощение жидкого материала
Путем экзоцитоза различные вещества выводятся из клеток: из пищеварительных вакуолей удаляются непереваренные остатки пищи, из секреторных клеток выводится их жидкий секрет.
14. Цитоплазматический матрикс, органеллы и включения клетки. Рецепторы клеток.
Цитоплазма состоит из водянистого основного вещества (цитоплазматический матрикс, гиалоплазма, цитозоль) и находящихся в нем разнообразных органелл и включений. Цитоплазматический матрикс - основное гомогенное или тонкозернистое полужидкое вещество клетки, заполняющее промежутки между клеточными структурами
Включения – продукты жизнедеятельности клеток. Выделяют 3 группы включений – трофического (запасы питательных веществ), секреторного (клетки желез)(хим соединения в жидком виде) и специального (пигмент)(выполняют определенные функции) значения.
Органеллы – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции. Выделяют органеллы общего значения и специальные. Органеллы специального назначения - микроворсинки эпителиальных клеток кишечника, реснички эпителия трахеи и бронхов, жгутики, миофибриллы Органеллам общего можно подразделить на органеллы, имеющие мембранное и немембранное строение Органеллы, немембраного строения: рибосомы, клеточный центр, микротрубочки, микрофиламенты. Органеллы, имеющие мембранное строение бывают двумембранные и одномембранные. К двумембранным относят митохондрии и пластиды. К одномембранным – эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, вакуоли..
Клеточный рецептор — молекула на поверхности клетки, клеточных органелл или растворенная в цитоплазме, специфически реагирующая изменением своей пространственной конфигурации на присоединение к ней молекулы определенного химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передающая этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников или трансмембранных ионных токов
15. Строение и функции ядра клеток. Хроматин и хромосомы, их взаимосвязь и тонкое строение. Гетеро- и эухроматин. Виды и законы хромосом, понятие о кариотипе.
Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. ( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)
Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.
Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).
Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).
Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.
В состав ядра входят:
1)ядерная оболочка;
2)кариоплазма;
3)ядрышко;
4)хроматин или хромосомы. Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.
Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.
В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.
Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.
Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.
Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.
Хроматин и хромосомы
Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке.
Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму. Несмотря на то, что в неделящихся клетках хроматин находится в деспирализованном состоянии, тем не менее отдельные его участки спирализованы, т.е. хроматин неоднороден по структуре.
Спирализованные участки хроматина называются гетерохроматин, а деспирализованные – эухроматин. На участках эухроматина идут процессы транскрипции (синтез иРНК).
Гетерохроматин – неактивный участок хроматина, здесь не происходит транскрипции.
В начале клеточного деления хроматин скручивается (спирализуется) и образует хромосомы, которые хорошо различимы в световой микроскоп. Значит, хромосома – суперспирализованный хроматин. Спирализация достигает своего максимума в метафазе митоза. Каждая метафазная хромосома состоит их двух сестринских хроматид, которые образуются при удвоении (репликации) ДНК в синтетический период интерфазы. Хроматиды соединены друг с другом в области первичной перетяжки – центромеры. Центромеры делят хромосомы на два плеча. В зависимости от места расположения центромеры различают следующие типы хромосом: