Файл: Основные этапы в информационном развитии общества. Информационные революции.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.01.2024
Просмотров: 383
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Представление текстовых данных.
Представление звуковой информации.
Основные принципы формальной логики. Понятие законов логики
[править]Свойства логических операций
3. На что следует обратить особое внимание или вопросы безопасности
Графический интерфейс пользователя
Растровые графические редакторы
Цифровое оборудование для создания растровых графическихобъектов
Билет №15
операции алгебры логики
Логические операции
Простейшим и наиболее широко применяемым примером такой алгебраической системы является множество B, состоящее всего из двух элементов:
B = { Ложь, Истина }
Как правило, в математических выражениях Ложь отождествляется с логическим нулём, а Истина — с логической единицей, а операции отрицания (НЕ), конъюнкции (И) и дизъюнкции (ИЛИ) определяются в привычном нам понимании. Легко показать, что на данном множестве B можно задать четыре унарные и шестнадцать бинарных отношений и все они могут быть получены через суперпозицию трёх выбранных операций.
Опираясь на этот математический инструментарий, логика высказываний изучает высказывания и предикаты. Также вводятся дополнительные операции, такие как эквивалентность («тогда и только тогда, когда»), импликация («следовательно»), сложение по модулю два («исключающее или»), штрих Шеффера , стрелка Пирса и другие.
Логика высказываний послужила основным математическим инструментом при создании компьютеров. Она легко преобразуется в битовую логику: истинность высказывания обозначается одним битом (0 — ЛОЖЬ, 1 — ИСТИНА); тогда операция приобретает смысл вычитания из единицы; — немодульного сложения; & — умножения; — равенства; — в буквальном смысле сложения по модулю 2 (исключающее Или — XOR);
— непревосходства суммы над 1 (то есть A B = (A + B) <= 1).
Впоследствии булева алгебра была обобщена от логики высказываний путём введения характерных для логики высказываний аксиом. Это позволило рассматривать, например, логику кубитов, тройственную логику (когда есть три варианта истинности высказывания: «истина», «ложь» и «не определено») и др.
[править]Свойства логических операций
-
Коммутативность: x y = y x, {&, }. -
Идемпотентность: x x = x, {&, }. -
Ассоциативность: (x y) z = x (y z), {&, }. -
Дистрибутивность конъюнкций и дизъюнкции относительно дизъюнкции, конъюнкции и суммы по модулю два соответственно:
-
, -
, -
.
Законы де Мо́ргана:
-
, -
.
Законы поглощения:
-
, -
.
Другие (1):
-
. -
. -
. -
. -
.
Другие (2):
-
. -
. -
. -
Другие (3) (Дополнение законов де Мо́ргана):
-
. -
.
Существуют методы упрощения логической функции: например, Карта Карно, метод Куайна - Мак-Класки
Билет №16
основные законы преобразования алгебры логики
В алгебре логики имеются законы, которые записываются в виде соотношений. Логические законы позволяют производить равносильные (эквивалентные) преобразования логических выражений. Преобразования называются равносильными, если истинные значения исходной и полученной после преобразования логической функции совпадают при любых значениях входящих в них логических переменных.
Для простоты записи приведем основные законы алгебры логики для двух логических переменных А и В. Эти законы распространяются и на другие логические переменные.
1. Закон противоречия:
2. Закон исключенного третьего:
3. Закон двойного отрицания:
4. Законы де Моргана:
5. Законы повторения: A & A = A; A v A = A; В & В = В; В v В = В.
6. Законы поглощения: A ? (A & B) = A; A & (A ? B) = A.
7. Законы исключения констант: A ? 1 = 1; A ? 0 = A; A & 1 = A; A & 0 = 0; B ? 1 = 1; B ? 0 = B; B & 1 = B; B & 0 = 0.
8. Законы склеивания:
9. Закон контрапозиции: (A ? B) = (B ? A).
Для логических переменных справедливы и общематематические законы. Для простоты записи приведем общематематические законы для трех логических переменных A, В и С:
1. Коммутативный закон: A & B = B & A; A ? B = B ? A.
2. Ассоциативный закон: A & (B & C) = (A & B) & C; A ? (B ? C) = (A ? B) ? C.
3. Дистрибутивный закон: A & (B ? C) = (A & B) ? (A & C).
Как уже отмечалось, с помощью законов алгебры логики можно производить равносильные преобразования логических выражений с целью их упрощения. В алгебре логики на основе принятого соглашения установлены следующие правила (приоритеты) для выполнения логических операций: первыми выполняются операции в скобках, затем в следующем порядке: инверсия (отрицание), конъюнкция ( & ), дизъюнкция (v), импликация (?), эквиваленция (?)
Билет №17
построение таблиц истинности, логические законы
Порядок выполнения логических операций в сложном логическом выражении:
инверсия;
конъюнкция;
дизъюнкция;
импликация;
эквивалентность.
Для изменения указанного порядка выполнения операций используются скобки.
Алгоритм построения таблиц истинности для сложных выражений: