ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.09.2020

Просмотров: 1365

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

11. Векторная модель географических данных.

Понятие о векторном формате связано с представлением линейных объектов в виде набора образующих их точек: любая кривая может быть описана с заданной точностью совокупностью отрезков прямых (или векторов), соединяющих эти точки.

Таким образом, фундаментальными понятиями для векторных ГИС являются: вершина (точка) и дуга — линия, составленная одним или несколькими отрезками. Площадные объекты (полигоны) задаются наборами дуг. Каждый отрезок дуги может являться границей между двумя полигонами.

Векторная модель отличается рядом особенностей, делающих ее более привлекательной для работы в ГИС по сравнению с растровой. Векторная модель помогает расположить слои с объектами разного типа в любой последовательности. Модель дает произвольный доступ к объектам по их названию или идентификатору. В такой форме легче осуществляются операции с объектами: выбор по свойству, анализ, замена условных обозначений и т. д. Векторная модель имеет значительное преимущество по точности. Многие приложения, использующие графику для расчетов, работают только с векторными файлами, т. к. такая технология более эффективна.

Показ векторного изображения в любом масштабе происходит без искажения, поскольку при отображении на экране программа, используя математическое описание каждого объекта, всегда может вычислить расположение и цвет пикселов экрана так, чтобы оптимальным образом передать изображение. Возможными становятся и такие режимы показа, которые не имеют аналогов в способах отображения растровой информации — например, показ поверхности в каркасном представлении.

Векторные модели с помощью дискретных наборов данных (линий, полигонов) отображают непрерывные объекты или явления. Следовательно, можно говорить о векторной дискретизации. При этом векторное представление позволяет отразить большую пространственную изменчивость, чем растровое, что обусловлено более четким показом границ.

И наконец, при хранении в памяти компьютера векторные объекты занимают меньший (в 100-1000 раз) объем памяти, легко редактируются, масштабируются и трансформируются без искажений.

Объект– обозначение пространственного элемента, который также называется геоэлементом, которому могут быть подчинена геометрия и тематика. Каждый объект принадлежит к классу объектов, свойства которого определяет объект

Стандартные форматы: AI, CDR, CGM, DXF, EPS, PDF, TGA, TIFF, WMF, шейп-файлы, покрытия ARC/INFO, чертежи САПР.


12. Растровая модель географических данных

Растровая модель — это цифровое представление пространственных объектов в виде совокупности ячеек растра (пикселов) с присвоенными им значениями атрибута. Каждой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам участок поверхности объекта. При необходимости координаты каждого пространственного объекта, отображенного набором пикселов, могут быть вычислены. Точность в растровых форматах, в большинстве случаев, определяется в половину ширины и высоты пиксела (рис. 4).

Основное назначение растровых моделей — непрерывное отображение поверхности. Иными словами, если векторная модель дает информацию о том, где расположен тот или иной объект, то растровая — показывает, что расположено в той или иной точке территории.

Для растровых моделей существует ряд характеристик: разрешение, ориентация, значение, зоны.

Разрешение — минимальный линейный размер наименьшего участка пространства (поверхности), отображаемый одним пикселом. Пикселы обычно представляют собой прямоугольники или квадраты, реже используются шестиугольники или треугольники. Более высоким разрешением обладает растр с меньшим размером ячеек. Высокое разрешение подразумевает обилие деталей, множество ячеек, минимальный размер ячеек.

Ориентация — угол между направлением на север и положением колонок растра.

Значение — величина атрибута, хранящаяся в ячейке растра.

Зона — все ячейки растра, имеющие одинаковые значения. Зоной могут быть отдельные объекты, геологические тела, элементы гидрографии и т.п. Для указания всех зон с одним и тем же значением используют понятие класс зон. Естественно, что не во всех слоях изображения могут присутствовать зоны. Основные характеристики зоны — ее значение и положение.

Растр может содержать один из трех типов информации. Растр с тематическими данными описывает территорию качественно, то есть дает представление о том, каковы свойства поверхности в данной точке. Например, возможны следующие градации значений тематического растра для горных пород: магматические, метаморфические, осадочные. Спектральные данные дают количественную характеристику, демонстрируют какова величина одного свойства в данной точке. Примером могут служить вариации магнитного поля или содержание мышьяка, имеющие определенное значение в каждой точке. И, наконец, просто фотографии, сканированные карты и другие графические данные несут только визуальную информацию.

Растровые модели имеют следующие достоинства. Модель очень проста – данные представляют собой набор чисел, как бы расположенных в рядах и колонках таблицы. Такие данные хорошо поддаются программированию. Растровые данные доступны для анализа во всех существующих ГИС. Многие растровые геоинформационные системы позволяют обрабатывать также и векторные данные. В ГИС, ориентированных на векторные модели, анализ растровой информации значительно сложнее. И наконец, процессы растеризации (получения растрового изображения по векторному) много проще алгоритмически, чем процессы векторизации, которые зачастую требуют применения экспертных решений.


Наиболее часто растровые модели применяют при обработке аэрокосмических снимков для получения данных дистанционных исследований Земли.

Стандартные форматы: TIFF, JPEG, GIF, BMP, WMF, PCX, PNG.


13. Аэросъемка, как метод формирования актуальных и точных данных для обновления картографической информации в ГИС

Аэросъемка на сегодняшний день является наиболее эффективным и дешевым методом формирования актуальных и точных данных для обновления картографической информации в ГИС. Результаты аэрофотосъемки в основном используются для создания и обновления карт различного масштаба и назначения. На сегодняшний день одной из самых совершенных систем является аэрофотосъемочный комплекс RS-39 производства LH System. Основными достоинствами этого комплекса являются возможности получения фотоснимков с сантиметровым разрешением на местности, великолепная оптика с разрешением 120 линий на миллиметр и др. характеристики. Требованиям топографической съемки также удовлетворяют характеристики цифрового авиационного сенсора ADS 40 компании Leica Geosystems. Цифровые аэросъемочные комплексы в зависимости от объема и содержания задач дистанционного исследования территории могут размещаться на тяжелых самолетах-лабораториях Ту-134, Ил-20, легких самолетах Ан-2, вертолетах Ми-8Т, Ка-26.

Использование тепловизоров является основой для выполнения работ по тепловой аэросъемке. Например, тепловизионный комплекс «Малахит» имеет высокую температурную чувствительность – 0,1 градуса, а на высоте 200 м улавливает средний геометрический размер элемента местности равный 30 см. С использованием тепловизоров выполняется широкий спектр работ – определение мест сброса загрязняющих веществ в водные объекты, съемка тепловых подземных коммуникаций, учет мигрирующих животных и др.

На самолетных платформах используются также видеосистемы цифровой регистрации высокого разрешения, которые дают возможность получать изображения с сантиметровым разрешением на местности, возможность непрерывной съемки в реальном масштабе времени без сжатия данных более 10 часов и многоканальные видеоспектрометры.

На борту реактивного самолета могут устанавливаться интерферометрические радары бокового обзора с синтезированной апертурой Х- и Р-диапазонов, например GeoSAR (США). Получаемые таким способом данные позволяют составить высокоточные модели рельефа даже в тех случаях, когда его скрывает от взгляда сверху плотный покров растительности. Преимущество технологии заключается также в том, что пользоваться ею можно в любое время суток, независимо от погодных условий.

При аэросъемке ГИС может также использоваться для расчетов границ кадров аэросъемки с последующим экспортом в ГИС. При данном цикле работ траектория полета и точная ориентация каждого кадра аэрофотосъемочной аппаратуры восстанавливаются на основе GPS-координат центров фотографирования, а высота съемки над поверхностью эллипсоида также берется из GPS-измерений, а высота рельефа над поверхностью эллипсоида определяется по цифровой модели рельефа. Полученные данные оформляются в векторный файл и экспортируются в ГИС.


Необходимо отметить, что аэрофотосъемка в настоящее время остается основным источником данных для ГИС и основным методом создания и обновления крупномасштабных карт. Несмотря на постоянно возрастающий спрос на космические данные, доля данных аэрофотосъемки на картографическом рынке оценивается в 94%.