ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 13.09.2020
Просмотров: 1440
Скачиваний: 6
Каждый из пикселов имеет координаты в цифровой записи: номер строки (х) и номер столбца (у). Началом координат служит первый пиксел (левый верхний пиксел изображения), и, как это принято в компьютерном представлении данных, номер строки возрастает при движении вниз, а столбца — вправо.
В радиометрическом отношении цифровой снимок также дискретизирован. Весь интервал яркостей от черного до белого принято делить, как указывалось выше, на 256 уровней (в машинном коде это соответствует 8 битам, или 1 байту на пиксел). Один уровень яркости соответствует радиометрическому разрешению снимка. Номер уровня яркости, или кодированное значение яркости, представляет третью координату пиксела цифрового снимка. В многозональном снимке пикселу с определенными координатами х, у соответствует несколько значений яркости, по числу съемочных каналов.
Снимок в целом или его фрагмент может быть представлен в виде матрицы значений яркости. Такая организация аэрокосмических данных позволяет манипулировать ими с помощью компьютера.
В результате проведения геометрических преобразований координаты элементов цифрового снимка могут быть связаны с пространственными координатами — географическими или геодезическими, а снимок трансформирован в заданную проекцию. В программных пакетах это преобразование может быть организовано как единая процедура или как две разные. В процессе присвоения пространственных координат (геокодировании) перестройки изменения аэрокосмического изображения не происходит, лишь устанавливается связь между растровыми и пространственными координатами. Второй процесс — трансформирование — требует перестройки изображения. Поясним это на простом примере разворота изображения.
Плоскость орбиты спутника, как правило, наклонена к оси Земли, т.е. оси координат цифрового снимка в общем случае не параллельны ни сетке параллелей и меридианов, ни сетке прямоугольных координат. На рис. 1 схематически показана цифровая запись снимка в первичном виде и после преобразований. Чтобы развернуть снимок «на север», т.е. сделать параллельными оси координат цифровой записи и пространственной системы (на рисунке это система географических координат), в запись вводятся «чистые» пикселы, что и приводит к изменению координат пикселов снимка в цифровой записи. В двух этих случаях координаты трех условно выбранных пикселов в системе цифровой записи различны.
В действительности перестройка изображения значительно сложнее, чем это показано на приведенном примере: для трансформирования снимка требуется введение новых пикселов или объединение двух в один по всему изображению, что влечет за собой некоторое ухудшение в воспроизведении мелких объектов.
В случае, когда снимок визуализирован на экране, каждый пиксел имеет, кроме того, координаты экрана. Они могут совпадать с координатами цифровой записи, если визуализированное изображение начинается с начала цифровой записи и выведено на экран в масштабе 1:1. Если же изображение на экране увеличено (уменьшено) и/или выведен лишь фрагмент записи, совпадения координат не будет. Таким образом, пикселы визуализированного на экране монитора цифрового снимка, предварительно преобразованного в определенную проекцию, имеют координаты в трех системах — цифровой записи, пространственных координат и экрана.
Система координат цифрового снимка |
||||||||
Пикселы |
Первичная цифровая запись |
Трансформированный и координированный снимок |
||||||
|
|
Цифровая запись |
Прямоугольная, км |
Географическая, |
||||
|
X |
У |
X |
У |
X |
У |
Ф |
X |
А Б В |
1 6 11 |
1 8 15 |
4 8 11 |
1 8 18 |
8737,0 8739,0 8741,0 |
5091,0 5087,0 5082,5 |
45°49,8 45°47,7 45°45,6 |
47°47,5 47°40,0 47°50,5 |
Рис. 1. Координаты пикселов в первичной цифровой записи (а) и после выполнения геометрических преобразований изображения (б)
Получение снимков в цифровом виде обеспечивается или при съемке, если используются оптико-электронные съемочные системы, или цифрованием фотографических снимков. Цифрование выполняется на специальных сканирующих микроденситометрах, называемых обычно сканерами. Пространственное разрешение современных сканеров (до 1—2 мкм) позволяет сохранить при переводе в цифровую форму даже высокое разрешение аэрофотоснимков.
Полученные оптико-электронными системами цифровые снимки с помощью устройств, преобразующих электрический сигнал в световой, могут быть представлены как фотографические изображения. Дешифрировать такие снимки можно только визуально, а используемые при этом признаки и способы не отличаются от тех, которые применяются при работе со снимками, полученными фотографическими системами.
Компьютерное дешифрирование
При компьютерном дешифрировании цифровых снимков возможны два подхода:
-
визуальное дешифрирование экранного изображения;
-
автоматизированная (компьютерная) классификация.
В первом случае информацию извлекает дешифровщик путем визуального анализа экранного изображения. Исполнитель в отличие от компьютера воспринимает прежде всего пространственную информацию, часто даже не зная количественных характеристик. Яркостные различия оцениваются им на качественном уровне, но зато он использует и другие дешифровочные признаки, форму например, а также косвенные дешифровочные признаки.
Второй подход заключается в выполнении математических процедур, позволяющих сгруппировать объекты по некоторому формализованному признаку. В настоящее время в качестве признака используют на черно-белых снимках — величину яркости, а на многозональных — набор значений яркости на серии зональных снимков, называемый спектральным образом. Анализ ведется на уровне отдельного пиксела. Пространственную информацию о дешифрируемых объектах при этом подходе обычно получают с использованием программных средств путем подсчета пикселов с близкими или одинаковыми характеристиками.
Основное преимущество первого подхода — легкость получения пространственной информации и благодаря привлечению комплекса дешифровочных признаков — высокий уровень принимаемых решений, а второго — возможность выполнения сложных математических преобразований при малом участии человека. Очевидно, что оба подхода могут дополнять один другого, а потому часто используются совместно.
Основные принципы и способы визуального дешифрирования сохраняются вне зависимости от того, представлены снимки как изображение на фотобумаге (пленке) или на экране. Различие заключается в том, что в первом случае дешифровщик имеет дело со снимком, свойства которого он не может изменить, а во втором такая возможность есть.
Преобразования цифровых снимков
Различают два вида преобразований цифрового снимка: геометрические и яркостные.
1. Конечной целью геометрических преобразований является представление цифрового снимка в определенной проекции и системе координат. Преобразования выполняются в случае использования снимков для создания карты или необходимости сопоставления разных по типу или времени получения материалов. Обязательны геометрические преобразования для данных дистанционного зондирования, входящих составной частью в базу данных геоинформационной системы.
Основная цель яркостных преобразований— улучшение визуального восприятия экранного изображения. Однако в некоторых случаях они могут служить конечным результатом дешифрирования.
2. Яркостные преобразования цифрового снимка
Преобразование яркостей цифрового снимка заключается в изменении передаточной функции, которая характеризует связь яркости объектов на местности с уровнем яркости на цифровом снимке (третьей координатой в цифровой записи). Передаточная функция цифрового снимка аналогична характеристической кривой фотографического снимка (рис. 2). Один и тот же интервал яркости на местности может быть зафиксирован на изображении разным числом уровней яркости. Чем больше число уровней, тем более контрастно изображение.
При визуализации цифрового снимка на экране цветного монитора уровень яркости воспроизводится цветом. При этом количество цветов не обязательно соответствует количеству уровней яркости при съемке и зависит от технических характеристик монитора. Если на экран выводится черно-белый снимок, цвета заменяются соответствующими ступенями серой шкалы.
Рис. 2. Передаточная функция цифрового снимка:
а — идеальная форма; б — частный случай
Яркостные преобразования черно-белого снимка. Интервал яркостей отдельного снимка может быть очень небольшим — 40—50 или даже 30 уровней. На таком снимке объекты изображаются почти одинаково и различаются с трудом. Более того, если интервал яркостей располагается в нижней части шкалы яркостей, то при выводе на экран снимок может вообще не читаться.
Существует целый ряд способов улучшения визуального восприятия изображения. Наиболее
распространенный из них — контрастирование — выполняется путем преобразования гистограммы изображения.
Рис. 3. Гистограмма цифрового снимка
Гистограмма характеризует распределение яркостей на снимке, показывая, сколько пикселов изображения приходится на каждый из 256 уровней яркости. Она может быть представлена в табличном или графическом виде (рис. 3).
Известны два подхода к решению задачи контрастирования изображения: первый заключается в растяжении гистограммы, второй — в перераспределении значений яркости. Первый вариант включает несколько способов преобразования: линейное или нелинейное, когда пересчет значений яркости происходит в соответствии с заданной математической зависимостью (линейной, логарифмической или экпоненциальной), и произвольное, выбранное исполнителем и не связанное с математическим выражением.
Линейное контрастирование заключается в растяжении существующего на снимке интервала яркостей (рис. 4). Чаще эта процедура выполняется путем пересчета значений яркости в соответствии с заданным уравнением (в приведенном примере — линейным). На исходном снимке встречались значения яркости от 27 до 120. В результате преобразования интервал значений яркости увеличился, но в основном за счет крайних значений. После того как были исключены по 1 % крайних значений яркости, было достигнуто существенное растяжение гистограммы, т.е. увеличение контраста (рис. 4в).
Аналогично выполняется нелинейное контрастирование, с той лишь разницей, что для пересчета значений яркости используются уравнения другого вида.
Дешифровщика могут интересовать на снимке не все, а лишь определенные объекты. В таком случае эффективно изменение не
всей гистограммы, а ее отдельных частей, т.е. произвольное преобразование графика передаточной функции. График преобразования может быть подобран таким образом, что возрастет контраст изображения только нужных объектов. Например, дешифровщика не интересуют светлые объекты — облака, песчаные отмели и самые темные — тени облаков, водные объекты.
-
Индикационное дешифрирование. Основные понятия ландшафтной индикации. Группы индикаторов.
1 Основные понятия ландшафтной индикации
Индикационное ландшафтоведение изучает теорию и практику определения различных природных и антропогенных явлений и процессов по внешним особенностям ландшафтов. Эти исследования получили название ландшафтной индикации.
Развитие ландшафтной индикации обусловлено несколькими причннами. Во-первых, быстрый темп современной хозяйственной деятельности требует разработки таких методов исследований, которые позволяли бы в сжатые сроки получать информацию о комплексе природных условий без длительных и трудоемких стационарных исследований или при минимальном объеме последних. Во-вторых, современное представление о природных геосистемах разных рангов утверждает существование тесной связи между всеми компонентами этих систем – как более доступными для непосредственного наблюдения» так и труднонаблюдаемыми (деципиентными), что наталкивает на мысль о возможности индикации последних по внешнему облику ландшафта. И наконец, прогресс аэрокосмических методов создает техническую основу для реализации этих направлений. Ландшафтная индикация имеет практическую направленность и содействует повышению эффективности различных исследований, осуществляемых в рамках тех или иных наук о Земле, что очень важно на современном этапе их развития.
При ландшафтно-индикационных исследованиях, являющихся одним из видов геоэкологических исследований, используют те внешние черты ландшафтов, которые доступны визуальному наблюдению и аэрофотографированию (в том числе и фотографированию из космоса) в качестве ориентировочных показателей различных явлений и процессов. Это такие явления и процессы, непосредственное наблюдение которых затруднено и требует применения более или менее сложных инструментальных методов, а иногда и стационарных методов исследований.
Индикация – это выявление индикаторов, возможно более полный сбор сведений о способах их распознавания на местности и при дешифрировании, раскрытие характера связи между индикатором и индикатом и практическое использование индикаторов.
Ландшафтная индикация определяет геологические, гидрогеологические, гидрологические, почвенные и климатические условия, а также последствия деятельности человека по внешнему облику ландшафта, по отдельным его составляющим, его компонентам и входящим в них элементам (растениям, формам рельефа и т. д.). Главнейшими исходными понятиями в ландшафтной индикации являются «индикат» и «индикатор».
Объектами индикации (индикатами) могут быть как различные природные тела (горные породы, почвы. и др.), так и те или иные свойства и протекающие в них процессы (в том числе и антропогенные). Показатели, которые при этом используются, называются индикаторами.
Среди показателей выделяют частные индикаторы, представленные отдельными элементами компонентов ландшафта (формы рельефа, растительные сообщества и пр.), и комплексные индикаторы, образованные устойчивыми сочетаниями частных индикаторов.
К наиболее распространенным частным индикаторам принадлежат различные формы рельефа (геоморфологические индикаторы), особенности открытой поверхности почв (почвенные индикаторы), растительные сообщества (геоботанические индикаторы), виды и внутривидовые формы растений (ботанические индикаторы), внешние черты гидросети и отдельных водоемов (гидрологические индикаторы), различные следы деятельности человека (антропогенные индикаторы). Kpyг частных индикаторов постоянно расширяется. В некоторых случаях эти индикаторы не имеют еще общего значения и применяются для решения отдельных частных задач.
Так, например, при выявлeнии месторождений подземных вод, связанных с древними погребенными долинами в аридных регионах (Садов, Бурлешин, Викторов, 1985) используется несколько групп индикаторов: а) тектонические индикаторы (разрывные нарушения и отрицательные пликативные структуры), б) геологические индикаторы, характеризующие изменение рельефа поверхности коренных пород, в) флювиальные индикаторы (унаследованность современной речной сетью древней погребенной сети), г) литологические индикаторы (изменение вещественного состава рыхлых покровных отложений над погребенными долинами) д) геоморфологические индикаторы (изменение рельефа в однораздельных участках, связанное с наличием древних долин).
2 Группы индикаторов
На ранних стадиях развития индикации представление об индикаторах было узким, к ним причислялись только те элементы внешнего облика территории, которые можно было непосредственно увидеть на местности и на аэрофотоснимке. В настоящее время наблюдается тенденция рассматривать индикаторы шире, относя к ним определенные природные особенности, непосредственно не наблюдаемые, но доступные более или менее простому и однозначному определению.
Это позволяет составить – две группы индикаторов: экзоиндикаторы (непосредственно видимые) и эндоиндикаторы (в той или иной мере замаскированные, скрытые).
Классической ландшафтной индикацией является та, которая выполняется по экзоиндикаторам. Не отрицая полезности представления о эндоиндикаторах, нельзя не признать что их широкое использование лишает ландшафтную индикацию той предельной конкретности и наглядности, которые составляют ее существенные преимущества перед другими видами исследований. Ориентируясь в своих работах на эндоиндикаторы, исследователь легко может подменить индикацию как таковую изучением разнообразных внутриландшафтных связей, не имеющим индикационной направленности.