ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.09.2020
Просмотров: 400
Скачиваний: 1
Уровенный режим озер.
Уровенный режим озер определяется комплексом следующих природных условий:
а) соотношением между приходной (осадки на зеркало озера, поверхностный приток, подземный приток) и расходной частью водного баланса озера (испарение, поверхностный и подземный сток из озера);
б) морфометрическими характеристиками озерной чаши и озерной котловины (соотношение между высотой стояния воды в озере и площадью его водного зеркала);
в) размерами озера, его формой, характером берегов, характером ветровой деятельности, определяющим размеры волн, сгонов и нагонов уровня.
Колебания уровня озера могут быть сведены к следующим трем основным видам: сезонные, годовые и кратковременные.
Иногда колебания уровня в годовом (сезонные) и многолетнем периоде, отражающие режим притока и убыли воды в озере, называют абсолютными колебаниями, а кратковременные, которые происходят одновременно с абсолютными изменениями уровня, называют относительными колебаниями. В силу того что относительные колебания протекают одновременно с абсолютными, они дополнительно увеличивают или уменьшают амплитуду абсолютного колебания уровня озера в отдельных его пунктах.
Сезонные колебания, происходящие в течение года, обусловливаются различными в разные месяцы, но более или менее правильно ежегодно повторяющимися соотношениями между приходной и расходной частями водного баланса.
Амплитуда годовых колебаний уровня воды в разных озерах различна и зависит oт ряда факторов: климатических условий, характера питания, размера площади водосбора, размера озера, геологических условий озерного ложа и др.
Абсолютные значения амплитуды колебания уровней естественных озер изменяются в довольно широких пределах — от десятков сантиметров до 2—4 м и больше в зависимости от сочетания указанных выше условий.
После ряда многоводных лет, когда приток превышает расход воды из озера, имеет место более высокое стояние уровней, чем после маловодных периодов. Вследствие того что на крупных (особенно бессточных) озерах уровень каждого данного года является следствием характера водности ряда предшествующих лет, низкий уровень может иметь место и в многоводном году, если этот год входит в цикл лет маловодного периода, и высокий — в маловодном, если этот маловодный год наблюдается в пределах многоводного периода.
Кроме отмеченной причины, имеющей место на каждом озере, иногда наблюдаются так называемые вековые колебания, вызываемые геологическими факторами (поднятие, опускание озерной котловины и отдельных частей ее).
Кратковременные, или относительные, колебания уровней воды в озере являются следствием волнения, ветровых нагонов и сгонов и сейш.
Динамические явления в озерах
Постоянные и временные движения водных масс. Движения водной массы, возникающие в озерах, могут быть разделены на постоянные и временные.
Постоянные движения воды в озере в форме течений вызываются впадающей в озеро или вытекающей из него рекой (сточные течения). Интенсивность таких течений определяется соотношением объема озера и расхода втекающей или вытекающей реки. Если объем воды в проточном озере невелик по сравнению с объемом воды, втекающей в озеро, то в озере устанавливается течение, аналогичное течению в реке, лишь с соответственно меньшими скоростями. Такое проточное озеро может в некотором смысле рассматриваться как крайний случай значительного расширения русла реки.
Если, наоборот, объем озера весьма велик по сравнению с объемом воды, втекающей и вытекающей из него, то, хотя оно и в этом случае называется проточным, но во многих отношениях по характеру происходящих в нем процессов ближе подходит к бессточному озеру. Течение такого типа наблюдается в оз. Байкал, объем которого чрезвычайно велик по сравнению с объемом стока втекающих в него рек Селенги, Верхней Ангары и др. и вытекающей из него р. Ангары.
Временные движения водной массы озера могут проявляться в виде течений и волнения.
Среди временных течений прежде всего следует выделить такие, которые возникают под действием ветра и вследствие неравномерного нагревания и охлаждения воды озера.
Ветровые (дрейфовые) течения оказывают особенно значительное влияние на характер физических процессов в озерах с большой площадью, плоской формой озерного ложа и малыми глубинами.
Неравномерность охлаждения и нагревания водных масс озера прежде всего вызывает вертикальные, так называемые конвекционные токи, в некоторой степени оказывающие влияние и на горизонтальные перемещения водных масс.
Среди временных движений водных масс озера наибольшее значение имеют ветровые волны и сейши.
Ветровые волны. Исследования показали; что если две среды разной плотности расположены одна над другой, но только в состоянии покоя одной среды относительно другой разделяющая их поверхность будет плоскостью. Если одна из них движется по отношению к другой, то разделяющая их поверхность принимает волнообразный характер, причем размеры волн зависят от скорости движения, разности плотностей и глубин обеих сред.
При движении воздуха над водной поверхностью в результате трения создается неустойчивое равновесие на поверхности их раздела, которое, неизбежно, нарушаясь, закономерно переходит в устойчивую в этих условиях волновую форму с повышением плоскости раздела против начальной линии уровня в одних местах и с понижением в других.
Волны характеризуются следующими элементами (Рис. 5):
— вершина, или гребень, волны — высшая точка волны А;
— подошва, или ложбина — самая низшая точка волны В;— высота волны — разность отметок гребня и подошвы;
— длина — расстояние между двумя вершинами или двумя подошвами;
— крутизна волны (а) в данной точке — тангенс угла, составляемого касательной к профилю волны с горизонтальной линией. Часто в расчетных зависимостях под крутизной волны понимают не крутизну в данной точке, а отношение длины волны к высоте волны;
— период волны — промежуток времени, в течение которого волна пробегает расстояние,_равное ее длине;
— скорость распространения волны — расстояние, проходимое какой-либо точкой волны (например, гребнем) в единицу времени.
По внешней форме различают:
а) правильное – двухмерное - волнение, когда наблюдается одна система волн, распространяющихся в одном направлении и имеющих одну форму и размеры;
б) неправильное – трехмерное - волнение, состоящее из беспорядочно движущихся волн, гребни и ложбины которых разбиты на обособленные бугры и впадины.
Рис. 5. Схема ветровой волны
Применительно к случаю правильных двухмерных волн существует теория волнения, известная под названием теории трохоидальных волн. Эта теория устанавливает внешнюю форму волны и законы движения частиц воды.
Форма волны, согласно рассматриваемой теории, представляет собой трохоиду, т. е. кривую, описываемую какой-либо точкой внутри круга, катящегося (без скольжения) по прямой, тогда как точка на окружности такого круга описывает кривую, называемую циклоидой (Рис. 6).
Рис. 6. Трохоида (1) и циклоида (2).
Сейши. Иногда в озере возникает колебание всей массы воды, причем по поверхности ее не распространяется никакой волны. Такое колебательное движение называется сейшами. При сейшах поверхность озера приобретает уклон то в одну, то в другую сторону. Неподвижная ось, около которой колеблется зеркало озера, называется узлом. Как показывают исследования, сейши более устойчивы в глубоководных водоемах, чем в мелководных.
Характеристика процесса нагревания и охлаждения воды в озерах.
Смена нагревания и охлаждения происходит неодновременно во всей толще воды. Наиболее резкие изменения температуры наблюдаются на поверхности водоема, откуда они под влиянием динамического и конвективного перемешивания, течений и волнения распространяются по всей толще воды.
Направление конвективного перемешивания, происходящего под влиянием разности плотностей воды на разных глубинах, будет различным в зависимости от того, выше или ниже 4°С (для пресных озер) температура к моменту возникновения конвекции.
Если температура воды озера от 0 до 4°С, то у поверхности, находится вода с более низкой температурой, а ниже в соответствии с изменением плотности располагаются слои с последовательно увеличивающей температурой, все более приближающейся к 4°С. В этом случае имеет место обратная термическая стратификация. С того момента, когда приходные составляющие теплового баланса начинают превышать расходные, увеличивается температура поверхностных слоев, которые, нагреваясь до 4°С, как более тяжелые опускаются вглубь, а на их место под влиянием конвекции поднимаются более холодные массы воды.
Когда температура по всей толще воды озера достигнет 4°С, дальнейшее нагревание поверхностных слоев приведет к повышению их температуры, но распространение тепла в глубину конвекцией происходить уже не будет. Возникнет прямая термическая стратификация, характеризующаяся убыванием температуры воды от поверхности в глубину.
Явление постоянства температуры по глубине, устанавливающейся осенью после нарушения прямой стратификации и весной после нарушения обратной стратификации, называют осенней и весенней гомотермией.
В результате суточного обмена тепла указанная картина несколько усложняется. Начиная с весны, после того как установится прямая температурная стратификация, в течение дня верхние слои воды будут нагреваться, а ночью, когда нагревание солнцем прекращается, охлаждаться. Этот процесс ведет, в конце концов, к выравниванию температуры в некотором поверхностном слое воды. В результате на нижней границе этого слоя температура резко изменяется, образуя так называемый слой температурного скачка. Слой скачка в течение лета непостоянен; появляясь весной, он летом углубляется и исчезает лишь осенью, когда нагревание озера ослабевает.
Слоем скачка вся толща озерной воды разделяется на два слоя:
- верхний – эпилимнион - с малыми градиентами температуры из-за интенсивного перемешивания;
- нижний – гиполимнион - также с малыми градиентами, но, наоборот, обусловленными слабым перемешиванием.
Изменение температуры воды в озерах в течение года. В соответствии с годовым ходом составляющих теплового баланса температура воды имеет ясно выраженный годовой ход:
В годовом цикле изменения температуры воды можно выделить периоды:
1) весеннего нагревания - начинается с момента, когда устанавливается направленный в воду тепловой поток. На замерзающих озерах весеннее нагревание воды начинается еще при наличии ледяного покрова за счет поглощения проникающей сквозь лед (после схода снега) солнечной радиации. Заканчивается период весеннего нагревания установлением температуры максимальной плотности во всей толще озера.
2) летнего нагревания - начинается с момента перехода гомотермии в прямую стратификацию. Перемешивание в это время осуществляется главным образом деятельностью ветра, при этом по мере усиления прямой стратификации сопротивление перемешиванию возрастает и теплообмен с нижележащими слоями становится все более затруднительным. Особенно большое сопротивление перемешиванию оказывает образующийся летом слой скачка, имеющий большие градиенты плотности и, следовательно, обладающий большой устойчивостью. Конвекция проявляется при этом только во время ночного охлаждения. В соответствии с характером распределения температуры по вертикали водная толща достаточно глубоких озер распадается на три слоя: эпилимнион, металимнион и гиполимнион.
Металимнион, является зоной температурного скачка. Нижняя граница металимниона неопределенна и постепенно переходит в гиполимнион.
3) осеннего охлаждения - начинается с момента появления отрицательного теплового потока и заканчивается установлением температуры наибольшей плотности во всей толще озера.
4) зимнего охлаждения - начинается с момента образования обратной стратификации температуры и на замерзающих озерах заканчивается с наступлением ледостава. С установлением ледяного покрова охлаждение осуществляется путем теплопроводности через толщу снега и льда. Т.к. этот процесс идет медленно, поступление тепла от дна начинает превышать расход и в мелководных озерах часто наблюдается повышение температуры воды после ледостава.
Ледовые явления.
С момента установления обратной стратификации при продолжающемся понижении температуры воздуха верхние слои воды охлаждаются до 0°С и начинается процесс замерзания озера.
Период времени, в течение которого на озере наблюдаются ледовые явления, может быть разделен на три характерные части: замерзание, ледостав и вскрытие.
Чтобы началось замерзание водоема, необходимо наличие переохлажденной воды и находящихся в ней ядер кристаллизации, а также непрерывный отток скрытой теплоты кристаллизации.
На небольших и неглубоких озерах при отсутствии ветра и сильном морозе уже незначительное переохлаждение в тончайшей поверхностной пленке воды создает условия, благоприятные для образования мелких игольчатых кристаллов льда, которые, скапливаясь, напоминают пятна застывшего на воде жира и называются салом. При дальнейшем охлаждении сало смерзается и превращается в ледяную корку с зеркально гладкой поверхностью, которая может покрыть водоем в течение одной тихой морозной ночи. Дальнейшее утолщение этой корки идет снизу и постепенно образуется прозрачный кристаллический лед – стеклец, ясинец, голубой лед. При наличии даже слабого ветра благодаря теплообмену с нижерасположенными более теплыми слоями ледообразование замедляется. В этих условиях кристаллы льда и сало возникают у берегов, где вода вследствие малой глубины охлаждается раньше, чем в открытой части озера. При дальнейшем охлаждении и смерзании сала образуются полосы из неподвижного льда – забереги. Постепенно забереги увеличиваются, продвигаясь к середине водоема, на поверхности которого появляется в изобилии сало. При безветрии сало быстро смерзается и поверхность озера покрывается коркой льда, выдерживающей влияние ветра до 5 м/с.
Большие мелководные озера при наличии умеренных ветров (до 5 м/с) замерзают аналогично малым.
На больших озерах в морозную и очень ветреную погоду происходит перемешивание большой толщи воды, которая переохлаждается. Наличие ядер кристаллизации способствует образованию мелких, пластинчатых кристаллов или смерзшихся в губчатую непрозрачную массу скоплений внутриводного льда, который может находиться в толще воды во взвешенном состоянии - глубинный лед, а также на дне – донный лед. Смерзаясь, кристаллы внутриводного льда всплывают и образуют на поверхности водоема скопления – шугу. Часто в шуге содержится сало и мелкобитый лед. Если шуга перемещается под действием стокового течения, образуется шугоход.