Файл: Шпоры по геохимии.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.09.2020

Просмотров: 860

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

9.происхождение хим. элементов Для объяснения распространенности в природе различных химических элементов и их изотопов в 1948 году Гамовым была предложена модель Горячей Вселенной. По этой модели все химические элементы образовывались в момент Большого Взрыва. Однако это утверждение впоследствии было опровергнуто. Доказано, что только легкие элементы могли образоваться в момент Большого Взрыва, а более тяжелые возникли в процессах нуклеосинтеза. Эти положения сформулированы в модели Большого Взрыва . По модели Большого Взрыва формирование химических элементов началось с первоначального ядерного синтеза легких элементов (Н, D, 3Не, 4Не, 7Li) спустя 100 секунд после Большого Взрыва при температуре Вселенной 109 K.Экспериментальную основу модели составляют расширение Вселенной, наблюдаемое на базе красного смещения, первоначальный синтез элементов и космическое фоновое излучение. Большим достоинством модели Большого Взрыва является предсказание о распространенности D, Не и Li, отличающихся друг от друга на много порядков. Экспериментальные данные о распространенности элементов в нашей Галактике показали, что атомов водорода 92%, гелия − 8%, и более тяжелых ядер − 1 атом на 1000, что согласуется с предсказаниями модели Большого Взрыва. Дозвездная стадия образования легчайших ядер. На этапе эволюции Вселенной через 100 с после Большого взрыва при температуре ~ 109 К вещество во Вселенной состояло из протонов p, нейтронов n, электронов e-, позитронов e+, нейтрино ν, антинейтрино и фотонов γ. Излучение, находилось в тепловом равновесии с электронами e-, позитронами e+ и нуклонами. соотношение распространенностей водорода и гелия, наблюдаемое в настоящее время, сформировалось в течение первых минут существования Вселенной. Расширение Вселенной привело к понижению её температуры и прекращению первичного дозвездного нуклеосинтеза. Образование химических элементов в звездах. Так как процесс нуклеосинтеза на ранней стадии эволюции Вселенной закончился образованием водорода, гелия и небольшого количества Li, Be, В, необходимо было найти механизмы и условия, при которых могли образоваться более тяжелые элементы. Г.Бете и К.Вайцзеккер показали, что соответствующие условия существуют внутри звезд. Более тяжелые ядра образовались лишь через миллиарды лет после Большого взрыва в процессе звездной эволюции. Образование химических элементов в звездах начинается с реакции горения водорода с образованием 4Не.



10.Планеты земной группы. Масса Меркурия невелика - она составляет лишь 0,06 массы Земли. Диаметр планеты равен всего 4880 км, так что она немногим больше Луны.Из-за близости к Солнцу на освещенной стороне планеты царит зной: в полдень на экваторе Меркурия температура поднимается на 400 градусов выше нуля по шкале Цельсия. Правда, в противоположной точке в то же время она опускается почти до 200 градусов ниже нуля. Меркурий состоит приблизительно на 70% из металлов и на 30% из силикатов. Фактически, он немного менее плотный, чем Земля, с плотностью 5.43 г/см³. По оценкам геологов, его ядро очень большое и главным образом состоит из железа. Ядро вероятно насчитывает до 42% объема Меркурия.Само ядро примерно 3600 км в диаметре, его окружает мантия толщиной 600 км, а вокруг нее находится кора, которая, по некоторым оценкам, имеет толщину 100-200 км. Известно, что кора имеет узкие горные хребты, которые простираются на сотни километров. Планетологи полагают, что эти горные хребты сформировались, когда планета остывала и сжималась.Венера. Состав планеты Венеры 96.5 процентов — углекислый, 3.5 процентов — азот, с незначительным количеством двуокиси серы, аргона, воды, угарного газа, гелия и неона. Металлическое железное ядро Венеры составляет примерно 2,400 миль (6,000 километров) в ширину. Литая скалистая мантия Венеры — примерно 1,200 миль (3,000 километров) толщиной. Кора поверхности Венеры — в основном, базальт, по разным оценкам, от 6 до 12 миль (10 — 20 километров) в толщину. Радиус планеты равен 6051,8 км (95% земного), масса - 4,87×1024кг (81,5% земной), средняя плотность - 5,24 г/см3. Марс. Газовая оболочка планеты состоит из состоит из 95% углекислого газа, 3% азота, 1,6% аргона, и следовых количеств кислорода, водяного пара и других газов. Кроме того, она очень сильно наполнена мелкими частицами пыли (в основном из оксида железа), которые придают ей красноватый оттенок. Марс имеет мощную кору (70-100 км),между твердой корой и ядром имеется силикатная мантия, в состав которой входит большое количество железа. • Расстояние до Земли: 225 300 000 км.Радиус: 3 390 км. Ускорение свободного падения: 3,711 м/с².Масса: 0,107 массы Земли).Земля. У поверхности Земли осушенный воздух содержит около 78,08 % азота (по объёму), 20,95 % кислорода, 0,93 % аргона и около 0,03 % углекислого газа. Земля имеет ярко выраженное внешнее и внутреннее ядро. Наружный слой Земли представляет собой твёрдую оболочку, состоящую главным образом из силикатов. От мантии она отделена границей с резким увеличением скоростей продольных сейсмических волн — поверхностью Мохоровичича. Твёрдая кора и вязкая верхняя часть мантии составляют литосферу. Под литосферой находится астеносфера, слой относительно низкой вязкости, твёрдости и прочности в верхней мантии.



11.Физические характеристики, состав Юпитера, Сатурна, Плутона. Юпитер Состав 89,8 процента молекулярный водород, 10,2 процента гелий, незначительные количества метана, аммиака, водорода дейтерида, этан, воду, аммиачный лед, распыление воды со льдом, распыление аммиака гидросульфида.Юпитер, возможно, имеет ядро из твердого материала, масса которого составляет примерно от 10 до 15 масс Земли. Выше ядра находится основной объем планеты в форме жидкого металлического водорода. Эта экзотическая форма возможна только при давлениях, превышающих 4 миллиона бар. Жидкий металлический водород состоит из ионизированных протонов и электронов (как внутри Солнца, но при более низкой температуре). При такой температуре и давлении, как у Юпитера, водород внутри него - жидкость, а не газ. Он является электрическим проводником и источником магнитного поля Юпитера. Этот водородный слой, возможно, также содержит некоторое количество гелия. Масса: 1,9*1027 кг. (318 масс Земли); Диаметр экватора: 143760 км. (11,2 диаметров экватора Земли);Плотность: 1,31 г/см3 Температура верхних облаков: -160°С - максимум .Расстояние от Солнца (среднее): 5,203 а.е., то есть 778 млн км . Период обращения по орбите (год): 11,867 лет .Период обращения вокруг собственной оси (сутки): 9,93 часа.Сатурн: • Масса: 5,68*1026 кг. (95 масс Земли); Диаметр экватора: 120420 км. (9,46 диаметров экватора Земли); Плотность: 0,71 г/см3 .Температура поверхности: -23°С на большей части поверхности, -150°С на полюсах, 0°С на экваторе. Расстояние от Солнца (среднее): 9,54 а.е., то есть 778 млн км Период обращения по орбите (год): 29,666 земных лет Период обращения вокруг собственной оси (сутки): 10,54 часа. Верхние слои атмосферы Сатурна состоят на 96,3 % из водорода (по объёму) и на 3,25 % — из гелия[16] (по сравнению с 10 % в атмосфере Юпитера). Имеются примеси метана, аммиака, фосфина, этана и некоторых других газов[17][18]. Аммиачные облака в верхней части атмосферы мощнее юпитерианских. Облака нижней части атмосферы состоят из гидросульфида аммония (NH4SH) или воды. Ниже атмосферы простирается океан жидкого молекулярного водорода. На глубине около 30 000 км водород становится металлическим (давление достигает около 3 миллионов атмосфер). Движение металла создает мощное магнитное поле. В центре планеты находится массивное железо-каменное ядро.Плутон• Масса: 1,29*1022 кг. (0,0022 массы Земли); Диаметр экватора: 2324 км. (0,18 диаметра экватора Земли); Плотность: 2 г/см3 Температура поверхности: -233°С Период вращения относительно звёзд(обратное вращение): 6,39 земных суток Расстояние от Солнца (среднее): 39,53 а.е., то есть 2,871 млрд км Период обращения по орбите (год): 248,54 земных лет. внутреннюю структуру Плутона составляют 50—70 % горных пород и 50—30 % льда.В условиях системы Плутона может существовать водяной лёд а также замёрзшие азот, монооксид углерода и метан.Строение:ядро из камня и льда,ледяная мантия, поверхность из водяного льда и замерзшего метана.




12. физические характеристики и химический состав астероидов. Астероидами считаются тела с диаметром более 30 м, тела меньшего размера называют метеороидами. Крупных тел в поясе астероидов очень мало, так, астероидов с диаметром более 100 км насчитывается около 200, ещё известно около 1000 астероидов с радиусом более 15 км, а данные исследований в инфракрасном диапазоне спектра позволяют предположить, что, помимо них, в главном поясе существует ещё от 700 тыс. до 1,7 млн астероидов диаметром от 1 км и более. Звёздная величина астероидов колеблется от 11m до 19m и для большинства из них составляет около 16m. Общая масса всех астероидов главного пояса приблизительно равна от 3,0·1021 до 3,6·1021 кг, что составляет всего 4% от массы Луны или 0,06% от массы Земли. Половина этой массы приходится на 4 крупнейших астероида из первой десятки: Цереру, Весту, Палладу и Гигею, причём почти её треть приходится на Цереру.Состав: Подавляющее большинство объектов в главном поясе составляют астероиды трёх основных классов: тёмные углеродные астероиды класса C, светлые силикатные астероиды класса S и металлические астероиды класса M. Существуют астероиды и других, более специфических классов, но их содержание в поясе крайне незначительно. Углеродистые астероиды класса C, названные так из-за большого процента простейших углеродных соединений в их составе, являются наиболее распространёнными объектами в главном поясе, на них приходится 75% всех астероидов, особенно большая их концентрация характерна для внешних областей пояса. Эти астероиды имеют слегка красноватый оттенок и очень низкое альбедо (между 0,03 и 0,0938). Поскольку они отражают очень мало солнечного света, их трудно обнаружить. Вполне вероятно, что в поясе астероидов находится ещё немало относительно крупных астероидов, принадлежащих к этому классу, но до сих пор не найденных из-за малой яркости. Зато эти астероиды довольно сильно излучают в инфракрасном диапазоне из-за наличия в их составе воды. В целом их спектры соответствуют спектру вещества, из которого формировалась Солнечная система, за исключением летучих элементов. По составу они очень близки к углеродистым хондритным метеоритам, которые находят на Земле. Крупнейшим представителем этого класса является астероид Гигея. Вторым по распространённости спектральным классом среди астероидов главного пояса является класс S, который объединяет силикатные астероиды внутренней части пояса, располагающиеся до расстояния 2,5 а. е. от Солнца. Спектральный анализ этих астероидов выявил наличие в их поверхности различных силикатов и некоторых металлов (железо и магний), но практически полное отсутствие каких-либо углеродных соединений. Это указывает на то, что породы за время существования этих астероидов претерпели значительные изменения, возможно, в связи с частичным плавлением и дифференциацией. Они имеют довольно высокое альбедо (между 0,10 и 0,2238) и составляют 17% от всех астероидов. Астероид Юнона является самым крупным представителем этого класса. Металлические астероиды класса M, богатые никелем и железом, составляют 10% от всех астероидов пояса и имеют умеренно большое альбедо (между 0,1 и 0,1838). Они расположены преимущественно в центральных областях пояса на расстоянии 2,7 а. е. от Солнца и могут быть фрагментами металлических ядер крупных планетезималей, вроде Цереры, существовавших на заре формирования Солнечной системы и разрушенных при взаимных столкновениях. Однако в случае с металлическими астероидами не всё так просто. В ходе исследований обнаружено несколько тел, вроде астероида Каллиопа, спектр которых близок спектру астероидов класса M, но при этом они имеют крайне низкую для металлических астероидов плотность. Химический состав подобных астероидов на сегодняшний день практически неизвестен, и вполне возможно, что по составу они близки к астероидам класса C или S. Прослеживается довольно чёткая зависимость между составом астероида и его расстоянием от Солнца. Как правило, каменные астероиды, состоящие из безводных силикатов, расположены ближе к Солнцу, чем углеродные глинистые астероиды, в которых часто обнаруживают следы воды, в основном в связанном состоянии, но возможно, и в виде обычного водяного льда. При этом близкие к Солнцу астероиды обладают значительно более высоким альбедо, чем астероиды в центре и на периферии.