ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.11.2020
Просмотров: 132
Скачиваний: 1
Билет 1 Давление света. Опыты Лебедева. Фотоны. ДАВЛЕНИЕ СВЕТА - давление, оказываемое светом на отражающие и поглощающие тела, частицы, а также отдельные молекулы и атомы; одно из пондеромоторных действий света, связанное с передачей импульса эл--магн. поля веществу. При нормальном падении света на поверхность твёрдого тела Д. с. определяется формулой p=S(1-R)/c, где S - плотность потока энергии (интенсивность света), R - коэф. отражения света от поверхности. Впервые гипотеза о существовании светового давления была высказана И. Кеплером в XVII веке для объяснения поведения хвостовкомет при пролете их вблизи Солнца. В 1873 г. Максвелл дал теорию давления света в рамках своей классической электродинамики.
|
Экспериментально световое давление впервые исследовал П. Н. Лебедев в 1899 г. В его опытах в вакуумированном сосуде на тонкой серебряной нити подвешивались крутильные весы, к коромыслам которых были прикреплены тонкие диски из слюды и различных металлов. Главной сложностью было выделить световое давление на фоне радиометрических и конвективных сил (сил, обусловленных разностью температуры окружающего газа с освещённой и неосвещённой стороны). Кроме того поскольку в то время не были разработаны вакуумные насосы, отличные от простых механических, Лебедев не имел возможности проводить свои опыты в условиях даже среднего, по современной классификации, вакуума. Путем попеременного облучения разных сторон крылышек Лебедев нивелировал радиометрические силы и получил удовлетворительное (±20 %) совпадение с теорией Максвелла. Позднее, в 1907—1910 гг. Лебедев провёл более точные опыты по изучению давления света в газах и также получил приемлемое согласие с теорией[1]. Фотон (от др.-греч. φς, род. пад. φωτς, «свет») — элементарная частица, переносчик электромагнитного взаимодействия, квант электромагнитного поля. Фотоны обозначаются буквой γ, поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий) -энергия фотона(h-постоянная планка,v-частота) -импульс фотона |
Билет 2 Фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна. Фотоэффе́кт, Фотоэлектрический эффект — испускание электронов веществом под действием света (или любого другогоэлектромагнитного излучения).
Формулировка 1-го закона фотоэффекта: Сила фототока прямо пропорциональна плотности светового потока. Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности. 3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит. |
Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода φ, покидает металл: где — максимальная кинетическая энергия, которую имеет электрон при вылете из металла. |
Билет 3 Рентгеновское излучение. Тормозное и характеристическое излучение. Закон Мозли.
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 102 Å (от 10−12 до 10−8 м) Рентгеновские лучи обладают следующими свойствами: - невидимость - прямолинейное распространение - проникающая способность - способность к поглощению - фотографическое действие - люминесцирующее действие - ионизационное действие - биологическое действие - закон обратных квадратов
|
Тормозное излучение (нем. bremsstrahlung, англ. braking radiation, deceleration radiation) — электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле Причиной значительного тормозного излучения может быть тепловое движение в горячей разреженной плазме. Мощность тормозного излучения полностью ионизированной плазмы есть[2]: , где: - мощность, эрг/сек; - порядковый номер элемента; - температура электронной плазмы. Когда энергия бомбардирующих анод электронов становится достаточной для вырывания электронов из внутренних оболочек атома, на фоне тормозного излучения появляются резкие линии характеристического излучения. Частоты этих линий зависят от природы вещества анода, поэтому их и назвали характеристическими. Состояние атома с вакансией во внутренней оболочке неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом испускает избыток энергии в виде фотона характеристического излучения. Английский физик Генри Мозли в 1913 году установил закон, названный его именем, связывающий частоты линий рентгеновского спектра с атомным номером испускающего их элемента Z: , где k = 3, 4, 5…; n=k+1,k+2,k+3… . Здесь , постоянная Ридберга; σ – постоянная, учитывающая экранирующую роль окружающих ядро электронов. Чем дальше электрон от ядра, тем σ больше.
|
|
|
Билет 4 Эффект Комптона. Дифракция рентгеновских лучей. Формула Вольфа-Бреггофф. Эффект Комптона — называют процесс рассеивания коротковолнового (рентгеновского) излучения на свободных электронах вещества, который сопровождается увеличением длины волны.
|
ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ - возникновение отклонённых (дифрагированных) лучей в результате интерференции упруго рассеянных электронами вещества вторичных волн. Д. р. л. обусловлена пространственно упорядоченным расположением атомов рассеивателя и большой величиной параметра пространственной дисперсии 5*10-21 (- длина волны рентгеновского излучения, d - характерное межатомное расстояние в веществе). Она является осн. методом исследования атомной структуры веществ. Явление Д. р. л., доказывающее их волновую природу, впервые было экспериментально обнаружено на кристаллах немецкими физиками М. Лауэ, В. Фридрихом и П. Книппингом в 1912 Условие ВульфаБрэгга определяет направление возникновения дифракции максимумов упругого рассеянного на кристалле рентгеновского излучения. Выведено в 1913 независимо У.Л. Брэггом и Г.В Вульфом. Имеет вид: , где d-межплоскостное расстояние, θ-угол скольжения падающего луча, n-порядок отражения, λ-длина волны. |
Билет 5 Тепловое излучение Тепловым называется излучение, которое происходит за счет внутренней энергии тела. Внутренняя энергия тела связана с температурой (теплом), поэтому излучениеназывают тепловым (температурным). Энергетической светимостью тела RT называют поток энергии, испускаемый единицей поверхности излучающего тела. Спектральная плотность энергетической светимости — функция частоты и температуры, характеризующая распределение энергии излучения по всему спектру частот (или длин волн). Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи где — поток энергии, поглощающейся телом. — поток энергии, падающий на тело в области вблизи |
Отражающая способность тела — — функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот вблизи
где — поток энергии, отражающейся от тела. — поток энергии, падающий на тело в области вблизи Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение — для абсолютно чёрного тела Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры — для серого тела Объемная плотность энергии излучения — — функция температуры, численно равная энергии электромагнитного излучения в единицу объёма по всему спектру частот Спектральная плотность энергии — — функция частоты и температуры, связанная с объемной плотностью излучения формулой:
|
Билет 6 Экспериментальные данные, легшие в основу учения о строении атома. Модель Томпсона. О сложности устройства атома свидетельствуют экспериментальные открытия, сделанные в науке на рубеже конца 19-начала 20 века. В 1879 году Крукс открыл катодные лучи, представляющие собой поток электронов в вакуумированной трубке, содержащей катод и анод. Английский физик Джозеф Томпсон назвал частицы катодных лучей электронами. Русский ученый Столетов открыл явление фотоэффекта – испускания металлом электронов под действием падающего на него света. Значимым стало открытие Рентгеном «Х»-лучей, позже названных рентгеновскими в честь ученого. Эти лучи представляют собой электромагнитное излучение подобное свету с гораздо более высокой частотой, испускаемой при действии на них катодных лучей. Большой вклад в развитие представлений об элементарных частицах внесли французский физик Антуан Анри Беккерель и супруги Кюри, открыв явление радиоактивности. Радиоактивность – это явление самопроизвольного превращения одного химического элемента в другой, сопровождаемое испусканием электронов или других частиц и рентгеновского излучения. Эти экспериментальные данные свидетельствуют о том, что атом – сложноустроенная система. |
Модель Томсона Атом по Томсону состоит из электронов, помещённых в положительно заряженный «суп», компенсирующий отрицательные заряды электронов, подобно отрицательно заряженным «изюминкам» в положительно заряженном «пудинге». Электроны, как предполагалось, были распределены по всему атому. Было несколько вариантов возможного расположения электронов внутри атома, в частности вращающиеся кольца электронов. В некоторых вариантах модели вместо «супа» предлагалось «облако» положительного заряда. Согласно этой модели, электроны могли свободно вращаться в капле или облаке такой положительно заряженной субстанции. Их орбиты стабилизировались тем, что, при удалении электрона от центра положительно заряженного облака, он испытывал увеличение силы притяжения, возвращающей его обратно, поскольку внутри его орбиты было больше вещества противоположного заряда, чем снаружи (по закону Гаусса). В модели Томсона электроны могли свободно вращаться по кольцам, которые стабилизировались взаимодействиями между электронами, а спектры объясняли энергетические различия между различными кольцевыми орбитами. |
Планетарная модель атома, или модель Резерфорда — историческая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеиванием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, — подобно тому, как планеты движутся вокруг Солнца |
Новую модель строения атома Резерфорд предложил в 1911 году как вывод из эксперимента по рассеиванию альфа-частиц на золотой фольге, проведённого под его руководством. При этом рассеянии неожиданно большое количество альфа-частиц рассеивалось на большие углы, что свидетельствовало о том, что центр рассеяния имеет небольшие размеры и в нём сосредоточен значительный электрический заряд. Расчёты Резерфорда показали, что рассеивающий центр, заряженный положительно или отрицательно, должен быть по крайней мере в 3000 раз меньше размера атома, который в то время уже был известен и оценивался как примерно 10−10 м. Поскольку в то время электроны уже были известны, а их масса и заряд определены, то рассеивающий центр, который позже назвали ядром, должен был иметь противоположный электронам заряд. Резерфорд не связал величину заряда с атомным номером. Этот вывод был сделан позже. А сам Резерфорд предположил, что заряд пропорционален атомной массе. Недостатком планетарной модели была её несовместимость с законами классической физики. Если электроны движутся вокруг ядра как планеты вокруг Солнца, то их движение ускоренное, и, следовательно, по законам классической электродинамики они должны были бы излучать электромагнитные волны, терять энергию и падать на ядро |
Билет 8 Типы взаимодействия в природе. Сильное взаимодействие. Ядерные силы На сегодня достоверно известно существование четырех фундаментальных взаимодействий:
|
Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Длина (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил. Итак, перечислим общие свойства ядерных сил: · малый радиус действия ядерных сил (R ~ 1 Фм); · большая величина ядерного потенциала U ~ 50 МэВ; · зависимость ядерных сил от спинов взаимодействующих частиц; · тензорный характер взаимодействия нуклонов; · ядерные силы зависят от взаимной ориентации спинового и орбитального моментов нуклона (спин-орбитальные силы); · ядерное взаимодействие обладает свойством насыщения; · зарядовая независимость ядерных сил; · обменный характер ядерного взаимодействия; · притяжение между нуклонами на больших расстояниях (r > 1 Фм), сменяется отталкиванием на малых (r < 0,5 Фм). |