ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2020

Просмотров: 492

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Вопрос 23

Упаковка днк в метафазную хромасому

Уровень метафазной хромосомы - четвертый уровень упаковки генетического материала. В метафпазе хроматиды еще спирализуются. Сокращение длины нитей происходит в 20 раз. Длина метафазных хромосом от 0,2 до 150 мкм, диаметр 0,2-5,0 мкм. Кольцевые молекулы ДНК прокариотических клеток содержат 5 х 10^6 пар нуклеотидов и образуют комплексы с негистоновыми белками

Вопрос 24

Хромосомы и хроматин. Гетеро- и эухроматин.

Хромосомы - нуклеопротеидные структурные Элементы ядра клетки, содержащие, днк, в которой заключена наследственная Информация организма, способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду поколений.

в митотическом цикле наблюдаются следующие Особенности структурной организации хромосом:

Различают митотическую и интерфазные формы Структурной организации хромосом, взаимопереходящие друг в друга в митотическом Цикле - это функциональные и физиологические превращения

функциональные превращения - компактизация - декомпактизация в клеточном цикле. Компактные, конденсированные, имеющие определенное строение во время митоза.

Для интерфазных хромосом в основном Свойственно деспирализованное состояние. Степень спирализации отдельных Фрагментов хромосом варьирует, образуя совокупность более или менее рыхло Расположенных нитчатых образований и глыбок хроматина ядра эукариотических Клеток.

смена двух физиологических форм: Транспортной ( идентифицируемой во время деления. Хромосомы компактные ясно Различимые) и функциональной в виде - хроматина (в промежутках между делениями, Хромосомы разрыхленные, нитевидные и не различимые по отдельности).

Химическая организация хромосом.

Химический состав хромосом - ДНК- 40%, Гистоновых белков - 40%. Негистоновых - 20% немного РНК. Липиды,полисахариды,ионы металлов.

Имеется 5 фракций основных гистоновых белков (Н1 , Н2А , Н2В , НЗ , Н4) и более 100 фракций кислых негистоновых белков,

Функции гистоновых белков: регуляторная (прочно соединяясь с ДНК препятствуют считыванию информации) и структурная (обеспечивают пространственную организацию ДНК в хромосомах. Образуя Нуклеогистон). Функции негистоновых белков: среди них ферменты регулирующие Процессы:

синтеза РНК (полимеразы) и процессинга РНК,

редупликации и репарации ДНК (геликаза. ДНК Попимераза, эндонуклеаза. Экзонуклеаза, лигаза),

регуляторная функция, заключающаяся в «запрещении» или «разрешении» считывания информации с молекулы ДНК

Днк эукариотических клеток представлена Следующими фракциями:

а) уникальные последовательности генов 56 % - Присутствуют в гаплоидном наборе в единственном числе, образуют основную часть Структурных и регуляторных генов,

б) гены со средним числом повторов 8 % - 102 - 104 копии это структурные гены кодирующие первичную структуру гистонов или Нуклеотидов рибосомальных и транспортных РНК,


в) многократно повторяющиеся гены 12 % -10б Копий - нетранскрибируемая сателлитная ДНК. Играющая роль спейсеров (фрагментов) разделяющих структурные и регуляторные гены .

г) блуждающие структурные гены, Положение которых в хромосоме меняется в зависимости от жизненного цикла,


д) молчащие гены они реплицируются, но не Транскрибируются. Участвуют в обеспечении структурной организации хроматина и В регуляции экспрессии генов.

Понятие об интерфазных слабоспирализованных Хромосомах, образующих хроматин интерфазного ядра

Классификация и функции хроматина: различают гетеро- и эухроматин.

а) гетерохроматин:

факультативный - образуется при Спирализации одной из двух гомологичных хромосом. Типичным примером служит Тельце полового хроматина, образуемого одной из двух Х-хромосом соматических Клеток женских особей человека и млекопитающих Функциональная роль Факультативного гетерохроматина заключается в компенсации снижении дозы определенного Гена.

структурный ~ отличается Высокоспирализованным состоянием, которое сохраняется на протяжении всего мит. Цикла. Он занимает постоянные участки в гомологичных хромосомах - это фрагменты Околоцентромерных, теломерных участков хромосом, Не содержит структурных генов (нетранскрибируемый); Его роль не ясна, но по видимому он выполняет опорную Функцию.

б) эухроматин - имеет менее компактную организацию, деспирализуется в Конце митоза, образует слабоокрашенные нитчатые структуры содержит структурные транскрибируемые Гены: в каждой хромосоме свой порядок расположения эухроматина и гетерохроматина. Что Используется для идентификации отдельных хромосом в цитогенетике.





Вопрос 25

1. Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данногобиологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

2. Идиограмма - (идио- + греч. gramma запись, изображение; син. кариограмма) графическое изображение отдельных хромосом со всеми их структурными характеристиками.

3. Основы существующей унифицированной классификации хромосом были заложены в 1960 году в Денвере. В основу классификации положены различия в длине хромосом и расположении центромеры. На основании различий в длине выделены 23 пары хромосом, при этом парам, имеющим наибольшую длину, дан наименьший номер (самыми длинными являются хромосомы 1- и 2-й пары). Выделяют группы метацентрических, субметацентрических и акроцентрических хромосом. Отнесение хромосом к тому или иному типу производится на основе расчета центромерного индекса - отношения длины короткого плеча к длине всей хромосомы. В группе мета-центрических хромосом короткое и длинное плечи приблизительно равны, и центромерный индекс приближается к 0,5. В субметацентрических хромосомах центромерный индекс снижен и составляет от 0,25 до 0,35, в акроцентрических хромосомах он часто не превышает 0,2. На основании комбинации этих двух основных признаков хромосомы сгруппированы в 7 групп, обозначаемых буквами английского алфавита (от А до G).


Группа А включает хромосомы 1, 2, 3, причем хромосомы 1 и 3 - метацентрики (центромерный индекс первой хромосомы равен 0,48-0,49, третьей - 0,45-0,46), а хромосома 2 - самый большой субметацентрик (с центромерным индексом 0,38-0,40).

Группа В состоит из двух хромосом - 4 и 5. Это большие субметацентрические хромосомы с центромерным индексом от 0,24 до 0,30.

Вопрос 26

Деление и дифференцировка клетки. Гибель клетки. Некроз и апаптоз.


Вопрос 27

Пролифера́ция -новообразование клеток и внутриклеточных структур (митохондрий, эндоплазматической сети, рибосом и др.). Лежит в основе роста и дифференцировки тканей, обеспечивает непрерывное обновление структур организма. С помощью П. ликвидируется образовавшийся при повреждении тканей дефект и нормализуется нарушенная функция. П. может возникать и вследствие нарушения гормональных влияний, приводя к уродливому увеличению органа, например при акромегалии. П. клеток, утративших способность дифференцироваться в клетки того или иного органа, ведет к возникновению опухолей. Одни органы и ткани обладают очень высокой способностью к П. клеток (соединительная, кроветворная. костная ткань, печень, эпидермис, эпителий слизистых оболочек), другие — более умеренной (скелетные мышцы, поджелудочная железа, слюнные железы и др.), третьи — совсем или почти лишены этой способности (ц.н.с., миокард).

Виды пролиферации: эпителиальная, фиброзная, сосудистая

Вопрос 28

Клеточный цикл

Функция воспроизведения и передачи генетической информации обеспечивается в ходе клеточного цикла.

Клеточный цикл - совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью.Клеточный цикл включает собственно митотическое деление и интерфазу - промежуток между делениями.

Интерфаза значительно более длительна, чем митоз (обычно занимает не менее 90% всего времени клеточного цикла) и подразделяется на три периода: пресинтетическиv или постмитотический (G1),синтетический (S) и постсинтетический или премитотический (G2).

1. G1 период наступает сразу же после митотического деления клетки и характеризуется активным ростом клетки и синтезом белка и РНК. G1 -период длится от нескольких часов до нескольких дней. В течение этого периода синтезируются особые "запускающие" белки (trigger proteins), или активаторы S-периода. Они обеспечивают достижение клеткой определенного порога, после которого она вступает в S-период.

2. Синтетический (S-) период характеризуется репликацией ДНК и синтезом белков, в частности, гистонов, которые поступают в ядро из цитоплазмы и обеспечивают нуклеосомную упаковку вновь синтезированной ДНК. В результате происходит удвоение числа хромосом. Одновременно удваивается число центриолей. S-период длится у большинства клеток 8-12 часов.

3. G2 период следует за S-периодом и продолжается вплоть до митоза В течение этого периода клетка осуществляет непосредственную подготовку к делению. Происходит созревание центриолей, запасается энергия, синтезируются РНК и белки (в частности, тубу-лин), необходимые для процесса деления. Длительность G2-периода составляет 2-4 часа.


Деление клеток

Митоз (кариокинезом) является универсальным механизмом деления клеток. Митоз следует за G2-периодом и завершает клеточный цикл. Он длится 1-3 часа и обеспечивает равномерное распределение генетического материала в дочерние клетки. Митоз включает 4 основные фазы профазу, метафазу, анафазу и телофазу.

Профаза начинается с конденсации хромосом, которые становятся видимыми в световой микроскоп как нитевидные структуры. Каждая хромосома состоит из двух параллельно лежащих сестринских хроматид, связанных в области центромеры. Ядрышко и ядерная оболочка к концу фазы исчезают. Кариоплазма смешивается с цитоплазмой. Центриоли мигрируют к противоположным полюсам клетки и дают начало нитям ахроматинового веретена. В области центромеры образуются особые белковые комплексы - кинетохоры, к которым прикрепляются некоторые микротрубочки веретена (кинетохорные микротрубочки)

Метафаза соответствует максимальному уровню конденсации хромосом, которые выстраиваются в области экватора митотического веретена. Хромосомы перемещаются в экваториальную плоскость и удерживаются в ней благодаря сбалансированному натяжению кинетохорных микротрубочек.

Анафаза начинается с синхронного расщепления всех хромосом на сестринские хроматиды (в области центромеры) и движения дочерних хромосом к противоположным полюсам клетки. Анафаза характеризуется удлинением митотического веретена за счет некоторого расхождения полюсов клетки. Она завершается скоплением на полюсах клетки двух идентичных наборов хромосом. В конце анафазы благодаря сокращению актиновых микрофиламентов, начинает образовываться клеточная перетяжка, которая углубляясь, в следующей фазе приведет к цитотомии.

Телофаза - конечная стадия митоза, в течение которой реконструируются ядра дочерних клеток и завершается их разделение. Вокруг Конденсированных хромосом восстанавливается кариолемма, вновь появляются ядрышки. Ядра Клеток постепенно увеличиваются, а хромосомы прогрессивно деспирализуются и исчезают, замещаясь картиной хроматина интерфазного ядpa. Одновременно происходит углубление клеточной перетяжки, и клетки в течение некоторого времени остаются связанными суживающимся цитоплазматическим мостиком. формируютя две дочерник клетки. В телофазе происходит распределение органелл между дочерними клетками.


Вопрос 29

Трансформация (от лат. transformatio - превращение), в молекулярной генетике, изменение наследственных св-в клеток в результате проникновения в них чужеродной ДНК. В результате трансформации клетка-реципиент может приобрести и устойчиво передавать своим потомкам признак, ранее у нее отсутствующий, но имеющийся у клетки донора (напр., ген устойчивости к антибиотикам). Механизм трансформации включает необратимую адсорбцию ДНК клетки-донора (напр., выделяемую в среду в результате лизиса клеток) на пов-сти клетки-реципиента. Хорошо адсорбируется лишь ДНК, имеющая мол. массу не менее 300 тыс. Адсорбция осуществляется на спец. рецепторах, где ДНК связывается с особыми белками и "втягивается" в клетку. При этом одна из нитей ДНК разрушается благодаря нуклеазнойактивности связывающих ДНК белков, и в клетку поступает уже однонитевая ДНК. Она тут же обволакивается молекулами белков, к-рые защищаютДНК от клеточных экзонуклеаз и способствуют ее контакту с хромосомой, а затем рекомбинации с ней. На этом процесс трансформации завершается.


Трансформация впервые была открыта в 1928 Ф. Гриффитом. В 1944 О. Эвери с сотрудниками показал, что превращение нек-рых непатогенных бактерий в патогенные осуществляется в результате переноса в геном первых ДНК, высвобождающейся из клеток вирулентных штаммов.

О роли ДНК в передаче наследственной информации свидетельствует также открытие в 1952 г. Зайндером и Ледербергом явления трансдукции, заключающееся в переносе генетического материала фагами от одних бактерий к другим. Ученые при этом показали, что в процессе трансдукции активное участие принимает ДНК (Лехов А. П., 1973).

Конъюгация — прямой перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном контакте этих клеток. Для реализации процесса необходим F-фактор — плазмида, кодирующая информацию, необходимую для конъюгации.

Конъюгация требует наличия двух типов клеток: доноров (F+), обладающих F-фактором, и реципиентов (F-), не обладающих им. При скрещивании клеток F- и F+ фактор фертильности передаётся с частотой, близкой к 100%.

Фактор переноса содержит гены специальных и необходимых при конъюгации структур — F-пилей и ряд других генов, вовлечённых в процесс взаимодействия с F--клетками.

Процесс конъюгации может происходить только при соблюдении ряда условий.

На поверхности реципиентных бактерий должны быть рецепторы пилей, имеющие существенное сродство ( к F-пилям, что позволяет образовать стабильную связь между пилями и рецепторами.

Для эффективной конъюгации у F-фактора должна быть точка начала репликации, распознаваемая репликативными системами хозяина.

Эффективность Hfr-конъюгации зависит от величины гомологии ДНК. Перенос негомологичного хромосомного материала донора не приведёт к его интеграции с ДНК реципиента.

Вопрос 30

Нуклеиновые кислоты - биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому. Было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК).

Химическая структура. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом:

Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1' до 5'. В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислор