Файл: Что такое нейронная сеть? (Требования к компетенции пользователя).pdf
Добавлен: 15.07.2023
Просмотров: 206
Скачиваний: 3
Введение
В последние десятилетия в мире бурно развивается новая прикладная область математики, специализирующаяся на искусственных нейронных сетях. Актуальность исследований в этом направлении подтверждается массой различных применений нейросетей. Это автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование, создание экспертных систем, организация ассоциативной памяти и многие другие приложения. С помощью нейросетей можно, например, предсказывать показатели биржевого рынка, выполнять распознавание оптических или звуковых сигналов, создавать самообучающиеся системы, способные управлять автомашиной при парковке или синтезировать речь по тексту. В то время как на западе применение НС уже достаточно обширно, у нас это еще в некоторой степени экзотика – российские фирмы, использующие НС в практических целях, наперечет.
Широкий круг задач, решаемый нейронными сетями, не позволяет в настоящее время создавать универсальные, мощные сети, вынуждая разрабатывать специализированные сети, функционирующие по различным алгоритмам. Тем не менее, тенденции развития нейросетей растут с каждым годом.
Цель моей работы – разбор базовых понятий, связанных с изучением нейронных сетей, а также выявление перспектив развития.
Базовые понятия искусственного нейрона
Нейронные сети, или, точнее, искусственные нейронные сети, представляют собой технологию, уходящую корнями во множество дисциплин: нейрофизиологию, математику, статистику, физику, компьютерные науки и технику. Они находят свое применение в таких разнородных областях, как моделирование, анализ временных рядов, распознавание образов, обработка сигналов и управление благодаря одному важному свойству - способности обучаться на основе данных при участии учителя или без его вмешательства. Исследования по искусственным нейронным сетям связаны с тем, что способ обработки информации человеческим мозгом в корне отличается от методов, применяемых обычными цифровыми компьютерами. Мозг представляет собой чрезвычайно сложный, нелинейный, параллельный компьютер. Он обладает способностью организовывать свои структурные компоненты, называемые нейронами , так, чтобы они могли выполнять конкретные задачи (такие как распознавание образов, обработку сигналов органов чувств, моторные функции) во много раз быстрее, чем могут позволить самые быстродействующие современные компьютеры.
Понятие развития нейронов связано с понятием пластичности мозга - способности настройки нервной системы в соответствии с окружающими условиями. Именно пластичность играет самую важную роль в работе нейронов в качестве единиц обработки информации в человеческом мозге. Аналогично, в искусственных нейронных сетях работа проводится с искусственными нейронами. В общем случае нейронная сеть представляет собой машину, моделирующую способ обработки мозгом конкретной задачи. Эта сеть обычно реализуется с помощью электронных компонентов или моделируется программой, выполняемой на цифровом компьютере.
Нейронная сеть - это громадный распределенный параллельный процессор, состоящий из элементарных единиц обработки информации, накапливающих экспериментальные знания и предоставляющих их для последующей обработки. Нейронная сеть сходна с мозгом с двух точек зрения. Знания поступают в нейронную сеть из окружающей среды и используются в процессе обучения. Для накопления знаний применяются связи между нейронами, называемые синаптическими весами. Процедура, используемая для процесса обучения, называется алгоритмом обучения. Эта процедура выстраивает в определенном порядке синаптические веса нейронной сети для обеспечения необходимой структуры взаимосвязей нейронов.
Преимущества нейронных сетей
Совершенно очевидно, что свою силу нейронные сети черпают, во первых, из распараллеливания обработки информации и, во вторых, из способности самообучаться, т.е. создавать обобщения. Под термином обобщение понимается способность получать обоснованный результат на основании данных, которые не встречались в процессе обучения. Эти свойства позволяют нейронным сетям решать сложные (масштабные) задачи, которые на сегодняшний день считаются трудно разрешимыми. Однако на практике при автономной работе нейронные сети не могут обеспечить готовые решения. Их необходимо интегрировать в сложные системы. В частности, комплексную задачу можно разбить на последовательность относительно простых, часть из которых может решаться нейронными сетями. Использование нейронных сетей обеспечивает следующие полезные свойства систем.
Нелинейность: Искусственные нейроны могут быть линейными и нелинейными. Нейронные сети, построенные из соединений нелинейных нейронов, сами являются нелинейными. Нелинейность является чрезвычайно важным свойством, особенно если сам физический механизм, отвечающий за формирование входного сигнала, тоже является нелинейным (например, человеческая речь). Отображение входной информации в выходную: Одной из популярных парадигм обучения является обучение с учителем. Это подразумевает изменение синаптических весов на основе набора маркированных учебных примеров. Каждый пример состоит из входного сигнала и соответствующего ему желаемого отклика. Из этого множества случайным образом выбирается пример, а нейронная сеть модифицирует синаптические веса для минимизации расхождений желаемого выходного сигнала и формируемого сетью согласно выбранному статистическому критерию. При этом собственно модифицируются свободные параметры сети. Ранее использованные примеры могут впоследствии быть применены снова, но уже в другом порядке. Это обучение проводится до тех пор, пока изменения синаптических весов не станут незначительными. Таким образом, нейронная сеть обучается на примерах, составляя таблицу соответствий вход-выход для конкретной задачи.
Адаптивность: Нейронные сети обладают способностью адаптировать свои синаптические веса к изменениям окружающей среды. В частности, нейронные сети, обученные действовать в определенной среде, могут быть легко переучены для работы в условиях незначительных колебаний параметров среды. Более того, для работы в нестационарной среде могут быть созданы нейронные сети, изменяющие синаптические веса в реальном времени. Естественная для классификации образов, обработки сигналов и задач управления архитектура нейронных сетей может быть объединена с их способностью к адаптации, что приведет к созданию моделей адаптивной классификации образов, адаптивной обработки сигналов и адаптивного управления. Известно, что чем выше адаптивные способности системы, тем более устойчивой будет ее работа в нестационарной среде. Для того чтобы использовать все достоинства адаптивности, основные параметры системы должны быть достаточно стабильными, чтобы можно было не учитывать внешние помехи, и достаточно гибкими, чтобы обеспечить реакцию на существенные изменения среды. Эта задача обычно называется дилеммой стабильности /пластичности.
Контекстная информация: Знания представляются в самой структуре нейронной сети с помощью ее состояния активации. Каждый нейрон сети потенциально может быть подвержен влиянию всех остальных ее нейронов. Как следствие, существование нейронной сети непосредственно связано с контекстной информацией.
Отказоустойчивость: Нейронные сети, облаченные в форму электроники, потенциально отказоустойчивы. Это значит, что при неблагоприятных условиях их производительность падает незначительно. Например, если поврежден какой то нейрон или его связи, извлечение запомненной информации затрудняется. Однако, принимая в расчет распределенный характер хранения информации в нейронной сети, можно утверждать, что только серьезные повреждения структуры нейронной сети существенно повлияют на ее работоспособность. Поэтому снижение качества работы нейронной сети происходит медленно. Незначительное повреждение структуры никогда не вызывает катастрофических последствий.
Аналогия с нейробиологией : Строение нейронных сетей определяется аналогией с человеческим мозгом, который является живым доказательством того, что отказоустойчивые параллельные вычисления не только физически реализуемы, но и являются быстрым и мощным инструментом решения задач. Нейробиологи рассматривают искусственные нейронные сети как средство моделирования физических явлений. С другой стороны, инженеры постоянно пытаются почерпнуть у нейробиологов новые идеи, выходящие за рамки традиционных электросхем.
Использование нейронных сетей
Нейронные сети могут решать широкий круг задач обработки и анализа данных − распознавание и классификация образов, прогнозирование, управление и т.д. Конкурентами являются классические методы анализа данных: методы статистики, идентификации систем и управления − частично это обрисовано при обсуждении преимуществ нейронных сетей.
Требования к компетенции пользователя
Под пользователем здесь понимается человек, непосредственно разрабатывающий нейросетевые модели, а не конечный пользователь готового нейросетевого "решателя". Несмотря на многочисленные заявления о том, что нейронные сети доступны пользователям-неспециалистам, реальное положение вещей на самом деле иное. Во-первых, правильную формулировку задачи никакой компьютер за пользователя не сделает, причем под "правильной формулировкой" понимается не только правильность смысловой постановки задачи, но и правильный выбор математического метода решения и его настроек − а это в случае нейронных сетей подразумевает выбор адекватной структуры нейросети, алгоритма обучения, критерия качества решения задачи и и т.д. Конечно, значительная гибкость и универсальность нейроалгоритмов допускает применение по принципу забивания гвоздей микроскопом, но не всегда это приводит к хорошему результату. Во-вторых, имеющиеся автоматические схемы подбора оптимальных настроек нейрометодов не могут найти правильные решения для более-менее сложных задач. Например, соответствующие процедуры в Statistica Neural Networks не умеют хорошо работать с временными рядами, поскольку не используют приведения ряда к стационарному виду. Так что для пользователей-неспециалистов хороших широкопрофильных автоматических инструментов нет. А если делать вручную, то для получения хороших результатов (я остаюсь пока в рамках примера с временными рядами) придется осваивать как теорию статистического прогнозирования временных рядов и соответствующий модуль пакета Statistica (или альтернативную статпрограмму), так и нейросетевые методы и программы. И для иных классов задач грамотное применение нейросетей требует хороших знаний как методов нейроинформатики, так и других методов обработки и анализа данных (статистики, например).
Области применения нейронных сетей
Наверно, в каждой предметной области при ближайшем рассмотрении можно найти постановки нейросетевых задач. Вот список отдельных областей, где решение такого рода задач имеет практическое значение уже сейчас.
Экономика и бизнес: предсказание рынков, автоматический трейдинг, оценка рисков невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление пере- и недооцененных компаний, автоматическое рейтингование, оптимизация товарных и денежных потоков, автоматическое считывание и распознавание чеков и документов, безопасность транзакций по пластиковым картам.
Медицина: постановка диагноза, обработка медицинских изображений, мониторинг состояния пациента, факторный анализ эффективности лечения, очистка показаний приборов от шумов.
Связь: сжатие видеоинформации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
Интернет: ассоциативный поиск информации, электронные секретари и агенты пользователя в Сети, фильтрация информации, блокировка спама, автоматическая рубрикация новостевых лент, адресные реклама и маркетинг для электронной торговли.
Автоматизация производства: оптимизация режимов производственного процесса, контроль качества продукции, мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.
Политологические и социологические технологии: предсказание результатов выборов, анализ социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, исследование и визуализация социальной динамики населения.
Безопасность и охранные системы: идентификация личности по отпечаткам пальцев, голосу, подписи, лицу, распознавание голоса, лиц в толпе, распознавание автомобильных номеров, анализ аэрокосмических снимков, мониторинг информационных потоков в компьютерной сети и обнаружение вторжений, обнаружение подделок.
Геологоразведка: анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.
Заключение
Развитие нейронных сетей вызвало немало энтузиазма и критики. Некоторые сравнительные исследования оказались оптимистичными, другие - пессимистичными. Для многих задач, таких как распознавание образов, пока не создано доминирующих подходов. Нужно пытаться понять возможности, предпосылки и область применения различных подходов и максимально использовать их дополнительные преимущества для дальнейшего развития интеллектуальных систем.
Множество надежд в отношении нейронных сетей сегодня связывают именно с аппаратными реализациями, но пока время их массового выхода на рынок, видимо, еще не пришло. Они или выпускаются в составе специализированных устройств, или достаточно дороги, а зачастую и то и другое. На их разработку тратится значительное время, за которое программные реализации на самых последних компьютерах оказываются лишь на порядок менее производительными, что делает использование нейропроцессоров нерентабельным. Но все это только вопрос времени — нейронным сетям предстоит пройти тот же путь, по которому еще совсем недавно развивались компьютеры, увеличивая свои возможности и производительность, захватывая новые сферы применения по мере возникновения новых задач и развития технической основы для их разработки.