Файл: Контрольная работа по Контроль качества в строительстве ( наименование дисциплины).docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.10.2023

Просмотров: 66

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальдегидных, полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), органическими (органопластики), борными (боропластики) и др. волокнами; металлические композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой; композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SiC. При использовании углеродных, стеклянных, амидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции с удельной прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и др. свойствам. Так, армирование сплавов Аl волокнами бора значительно улучшает их механические характеристики и позволяет повысить температуру эксплуатации сплава с 250-300 до 450-500 °С. Армирование проволокой (из W и Мо) и волокнами тугоплавких соединений используют при создании жаропрочных композиционных материалов на основе Ni, Cr, Co, Ti и их сплавов. Так, жаропрочные сплавы Ni, армированные волокнами, могут работать при 1300-1350°С. При изготовлении металлических волокнистых композиционных материалов нанесение металлической матрицы на наполнитель осуществляют в основном из расплава материала матрицы, электрохимическим осаждением или напылением. Формование изделий проводят гл. обр. методом пропитки каркаса из армирующих волокон расплавом металла под давлением до 10 МПа или соединением фольги (матричного материала) с армирующими волокнами с применением прокатки, прессования, экструзии при нагреве до температуры плавления материала матрицы.

Один из общих технологических методов изготовления полимерных и металлических волокнистых и слоистых композиционных материалов - выращивание кристаллов наполнителя в матрице непосредственно в процессе изготовления деталей. Такой метод применяют, напр., при создании эвтектических жаропрочных сплавов на основе Ni и Со. Легирование расплавов карбидными и интерметаллическими соединениями, образующими при охлаждении в контролируемых условиях волокнистые или пластинчатые кристаллы, приводит к упрочнению сплавов и позволяет повысить температуру их эксплуатации на 60-80
oС. Композиционные материалы на основе углерода сочетают низкую плотность с высокой теплопроводностью, хим. стойкостью, постоянством размеров при резких перепадах температур, а также с возрастанием прочности и модуля упругости при нагреве до 2000 °С в инертной среде. Высокопрочные композиционные материалы на основе керамики получают при армировании волокнистыми наполнителями, а также металлическими и керамическими дисперсными частицами. Армирование непрерывными волокнами SiC позволяет получать композиционные материалы, характеризующиеся повышенной вязкостью, прочностью на изгиб и высокой стойкостью к окислению при высоких температурах. Однако армирование керамики волокнами не всегда приводит к значительному повышению ее прочностных свойств из-за отсутствия эластичного состояния материала при высоком значении его модуля упругости. Армирование дисперсными металлическими частицами позволяет создать керамико-металлические материалы (керметы), обладающие повышенной прочностью, теплопроводностью, стойкостью к тепловым ударам. При изготовлении керамических композиционных материалов обычно применяют горячее прессование, прессование с последующим спеканием, шликерное литье. Армирование материалов дисперсными металлическими частицами приводит к резкому повышению прочности вследствие создания барьеров на пути движения дислокаций. Такое армирование гл. обр. применяют при создании жаропрочных хромоникелевых сплавов. Материалы получают введением тонкодисперсных частиц в расплавленный металл с последующей обычной переработкой слитков в изделия. Введение, напр., ТhO2 или ZrO2 в сплав позволяет получать дисперсноупрочненные жаропрочные сплавы, длительно работающие под нагрузкой при 1100-1200°С (предел работоспособности обычных жаропрочных сплавов в тех же условиях 1000-1050°С). Перспективное направление создания высокопрочных композиционных материалов - армирование материалов нитевидными кристаллами ("усами"), которые вследствие малого диаметра практически лишены дефектов, имеющихся в более крупных кристаллах, и обладают высокой прочностью. Наиболее практический интерес представляют кристаллы Аl2О3, BeO, SiC, B4C, Si3N4, AlN и графита диаметром 1-30 мкм и длиной 0,3-15 мм. Используют такие наполнители в виде ориентированной пряжи или изотропных слоистых материалов наподобие бумаги, картона, войлока. Введение в композицию нитевидных кристаллов может придавать ей необычные сочетания электрических и магнитных свойств. Выбор и назначение композиционных материалов во многом определяются условиями нагружения и температурой эксплуатации деталей или конструкций, технол. возможностями. Наиболее доступны и освоены полимерные композиционные материалы. Большая номенклатура матриц в виде термореактивных и термопластичных полимеров обеспечивает широкий выбор композиционные материалы для работы в диапазоне от отрицательных температур до 100-200°С - для органопластиков, до 300-400 °С - для стекло-, угле - и боропластиков. Полимерные композиционные материалы с полиэфирной и эпоксидной матрицей работают до 120-200°, с феноло-формальдегидной - до 200-300 °С, полиимидной и кремнийорганической - до 250-400°С. Металлические композиционные материалы на основе Аl, Mg и их сплавов, армированные волокнами из В, С, SiC, применяют до 400-500°С; композиционные материалы на основе сплавов Ni и Со работают при температуре до 1100-1200 °С, на основе тугоплавких металлов и соединений - до 1500-1700°С, на основе углерода и керамики - до 1700-2000 °С. Использование композитов в качестве конструкционных, теплозащитных, антифрикционных, радио - и электротехнических и др. материалов позволяет снизить массу конструкции, повысить ресурсы и мощности машин и агрегатов, создать принципиально новые узлы, детали и конструкции. Все виды композиционные материалы применяют в химической, текстильной, горнорудной, металлургической промышленности, машиностроении, на транспорте, для изготовления спортивного снаряжения и др.




3. Вяжущие вещества



Общие сведения и классификация

Вяжущие вещества – вещества, выполняющие функцию цементирующего компонента. По происхождению вяжущие вещества могут быть как органическими, так и неорганическими.

Вяжущие – вещества, способные затвердевать в результате физико-химических процессов. Переходя из тестообразного в камневидное состояние, вяжущее вещество скрепляет между собой камни либо зёрна песка, гравия, щебня. Это свойство вяжущих используется для изготовления: бетонов, силикатного кирпича, асбоцементных и других необожжённых искусственных материалов; строительных растворов – кладочных, штукатурных и специальных.

Вяжущие вещества по составу делятся на

1. неорганические (известь, цемент, строительный гипс, жидкое стекло и др.), которые затворяют водой (реже водными растворами солей). Включают: вяжущие воздушные, вяжущие гидравлические, вяжущие автоклавного твердения.

2. органические (битумы, дёгти, животный клей, полимеры), которые переводят в рабочее состояние нагреванием, расплавлением или растворением в органических жидкостях.

Органические вяжущие вещества представляют собой природные пли искусственные твердые, вязкопластичные или жидкие (при нормальной температуре) продукты, способные изменять свои физико-механические свойства в зависимости от температуры. В зависимости от химического состава, вида сырья и технологии производства органические вяжущие вещества разделяют на битумы и дёгти. На основе битумов и дёгтей изготовляют другие вяжущие вещества (битумно-дёгтевые) и материалы в виде эмульсий и паст (при температуре не ниже 2° С эмульсии имеют жидкую консистенцию, пасты до состояния, текучести разбавляются водой), асфальтовых лаков, асфальтовых растворов и бетонов. Битумы и дегти применяют также для изготовления рулонных кровельных и гидроизоляционных материалов.

Неорганическими вяжущими веществами называют порошкообразные материалы, образующие при смешивании с водой пластичную удобообрабатываемую массу, затвердевающую со временем в камневидное прочное тело.

По составу, основным свойствам и областям применения различают вяжущие материалы: гидравлические, воздушные, кислотоупорные и автоклавного твердения. Каждую из этих групп в свою очередь делят на несколько разновидностей в соответствии с составом и основными свойствами.


Гидравлические вяжущие вещества (цементы) способны при затворении водой после предварительного затвердевания на воздухе продолжать твердеть в воде, сохраняя и наращивая свою прочность. По виду клинкера и вещественному составу различают: Цементы на основе портландцементного клинкера (портландцемент, портландцемент с минеральными добавками, шлакопортландцемеит, пуццолановый портландцемент) и цементы на основе глиноземистого клинкера (глиноземистый, высокоглиноземистый и гипсоглиноземистый)

Воздушные вяжущие вещества при затворении водой схватываются, твердеют и превращаются в камень только на воздухе. Образовавшийся камень длительно сохраняет прочность также только в воздушной среде. Такие материалы применяют лишь в надземных сооружениях, не подвергающихся действию воды. К этой группе относятся строительная воздушная известь, гипсовые и магнезиальные вяжущие материалы.

Кислотоупорные вяжущие вещества после затвердевания на воздухе могут длительное время сохранять прочность при действии на них минеральных кислот. Их применяют в тех случаях, когда затвердевший материал работает в кислой среде. К этой группе вяжущих принадлежит кислотоупорный цемент, кварцевый кремнефтористый цемент и др.

Вяжущие вещества автоклавного твердения превращаются в камень лишь при автоклавной (гидротермальной) обработке при давлении насыщенного пара 0,9—1,3 МПа и температуре 440— 470 К, например известково-кремнеземистые вяжущие.

К основным свойствам вяжущих веществ относятся плотность, насыпная плотность, водопотребность, скорость схватывания и твердения, прочность.

Плотность зависит от вида вяжущего. Выше всего она у негашеной извести — 3,1—3,3 г/см3 и портландцемента — 3—3,2 г/см3, ниже всего у гипсовых вяжущих — 2,6—2,7 г/см3.

Насыпная плотность тем ниже, чем меньше плотность и больше тонкость измельчения вяжущих. Насыпная плотность портландцемента в рыхлонасыпном состоянии — 900—1100 кг/см3.

Водопотребность характеризуется количеством воды, необходимым для получения теста стандартной консистенции (нормальной густоты). Чем ниже водопотребность, тем выше качество вяжущих, больше его прочность. Наиболее низкая водопотребность у портландцемента— 24—28%, наиболее высокая у гипсовых вяжущих — 50—80%.

Сроки схватывания определяют период, в течение которого смесь вяжущего вещества с водой сохраняет свою пластичность. Особенно быстро схватываются гипсовые вяжущие: начало схватывания — 4—5 мин, конец—через 10—15 мин после затворения водой. Очень медленно схватывается гидратная известь — через 3—5 сут. Гидравлические вяжущие (цементы) в соответствии с ГОСТ 23464—79 по срокам схватывания классифицируют на медленносхватывающиеся (с началом схватывания более 1 ч 30 мин); нормальносхватывающиеся (с началом схватывания от 45 мин до 1 ч 30 мин) и быстросхватывающиеся (с началом схватывания менее 45 мин).


Скорость твердения определяют интенсивностью реакций взаимодействия вяжущего вещества с водой. У гипсовых вяжущих она составляет 1—2 ч. Твердение гашеной извести протекает годами и десятилетиями. Цементы по скорости твердения различают: обычные (с нормированием прочности в возрасте 28 сут), быстротвердеющие (с нормированием прочности в возрасте 1 и 28 сут), особо •быстротвердеющие (с нормированием прочности в возрасте 1 сут :.и менее).

Прочность характеризует способность вяжущего вещества после затвердевания воспринимать без разрушения сжимающие, растягивающие и другие внешние нагрузки. Чем выше прочность камня и чем быстрее она достигается, тем-выше качество вяжущего. Прочность искусственного камня зависит от многих факторов: вида вяжущего, степени его измельчения, водопотребности, условий и длительности твердения. Для большинства гидравлических вяжущих прочность оценивают испытанием на изгиб балочек 40x40X160 мм и их половинок на сжатие из раствора 1 : 3 при водоцементном отношении 0,4 в возрасте 28 сут. По прочности различают цементы: высокопрочные (М550, 600 и выше), повышенной прочности (М500), рядовые (М300 и 400), низкомарочные (ниже М300). Высокой прочностью характеризуются также вяжущие автоклавного твердения. Прочность воздушных вяжущих значительно ниже (5—20 МПа).[1]

Воздушные вяжущие вещества

Воздушные вяжущие вещества в результате смешивания с водой способны отвердевать и сохранять прочность только на воздухе. Под воздействием воды изделия на их основе постепенно разрушаются. Поэтому воздушные вяжущие вещества используются только в наземных строительных сооружениях.

В группу воздушных вяжущих входит воздушная известь, а также гипсовые и магнезиальные вяжущие вещества.

Воздушная известь может быть нескольких видов: негашеная комовая известь, негашеная молотая известь, гидратная известь (пушонка).

Гипсовые вяжущие вещества изготовляют из гипсового камня, представляющего собой, в основном, двуводный гипс — CaS04·2H20, ангидрита, состоящего главным образом из безводного гипса — CaS04, и некоторых отходов химической промышленности, содержащих преимущественно двуводный или безводный сульфат кальция. Химически чистый двуводный гипс состоит из 32,56% СаО; 46,51% S03 и 20,93% воды, а ангидрит—из 41,19% СаО и 58,81% S03. Двуводный гипс — мягкий минерал, его твердость по шкале Мооса равна 2. Твердость ангидрита колеблется в пределах 3—3,5. Плотность двуводного гипса 2,2—2,4, а ангидрита — 2,9—3,1. Растворимость двуводного гипса, пересчитанного на CaS0