Файл: А. Д. Чередов, А. Н. Мальчуков.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 643

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

АРХИТЕКТУРЫ, ХАРАКТЕРИСТИКИ, КЛАССИФИКАЦИЯ ЭВМ

ПК-блокноты (ноутбуки) Все ноутбуки (notebook) классифицируются на несколько типовых разновидностей по размеру диагонали дисплея, назначению, компонов- ке составных узлов, функциональным возможностям, габаритам, весу и другим отличиям. К основным типам ноутбуков можно отнести: «за- мену настольного ПК» (Desktop Replacement), массовые ноутбуки, уль- трабуки, смартбуки.В качестве замены настольного ПК обычно позиционируются но- утбуки с диагональю экрана 17 дюймов и выше. Габариты и вес (от 3 кг и выше) портативных компьютеров весьма значительны, что делает их неудобными в переноске. Однако относительно большой размер дис- плея обеспечивает более комфортную работу, а объемистый корпус позволяет установить мощные компоненты и обеспечить им достаточ- ное охлаждение. Такие ноутбуки имеют встроенные жесткий диск, ак- кумулятор, CD или DVD-привод, порты ввода/вывода. Снаружи подсо- единяется блок питания, как у всех других ноутбуков. Одним из самых мощных и дорогих ноутбуков категории Desktop Replacement в 2015 г. является ASUS ROG G751JL с размером экрана по диагонали 17,3', с разрешение 1920х1080 точек. Процессор – Intel Core i7-4720HQ с часто- той 2,6 ГГц. Оперативная память до 32 Гбайт, видеокарта – NVIDIA GeForce GTX 965M с двумя гигабайтами собственной памяти. Вес – 4,5 кг. Стоимость $2500.Массовые ноутбуки (специального названия для данной категории ноутбуков не предусмотрено) имеют диагональ экрана 14'-16', их вес обычно укладывается в 2–3 кг, толщина оказывается чуть меньше ноут-буков «замена настольного ПК». Обычно эти модели оснащены встро- енными жестким диском и оптическим накопителем.Ультрабуки (ultrabooks) – тонкий и легкий ноутбук, обладающий ещё меньшими габаритами и весом по сравнению с обычными ноутбу- ками, но при этом – большей частью характерных черт полноценного ноутбука. Термин стал широко распространяться в 2011 году, после то- го как корпорация Intel презентовала новый класс мобильных ПК – уль- трабуки.Немного истории. Первоначально концепция мобильного компью- тера, более компактного и лёгкого, чем обычный ноутбук, появилась в 1996 году, когда корпорация Toshiba выпустила семейство ноутбуков Toshiba Libretto. Этот класс компьютеров получил наименование субно- утбуки. С тех пор в течение 15 лет субноутбуки постоянно развивались в направлении снижения габаритов и цены и увеличения вычислитель- ной мощности и длительности автономной работы от встроенной акку- муляторной батареи.15 января 2008 года Стив Джобс провёл презентацию нового сверхлёгкого субноутбука Apple MacBook Air, выполненного в сверх- тонком алюминиевом корпусе и не имевшего аналогов на тот момент. После начала продаж выяснилось, что данный субноутбук имеет повы- шенный спрос у потребителей, и вскоре стали появляться аналоги от других производителей ноутбуков: Dell Adamo, Lenovo ThinkPad X300, Samsung 900X3A, Sony Vaio Y.В мае 2011 года появился новый класс мобильных ПК – ультрабу- ки, который является дальнейшим эволюционным развитием классиче- ских субноутбуков и во многом использует идеи, реализованные в сверхтонком ноутбуке от Apple, MacBook Air.Нетбуки (netbooks) как отдельная категория ноутбуков были выде- лены из категории субноутбуков в 2008 г. компанией Intel. Размер диа- гонали экрана нетбуков – от 7' до 12,1'. Нетбуки ориентировались на просмотр веб-страниц, работу с электронной почтой и офисными про- граммами. Для этих ноутбуков были разработаны специальные энер- гоэффективные процессоры Intel Atom, VIA C7, VIA nano, AMD Geode. Малый размер экрана, небольшая клавиатура и низкая производитель- ность подобных устройств компенсировались умеренной ценой и отно- сительно большим временем автономной работы. Габариты обычно не позволяли устанавливать в нетбук дисковод оптических дисков, однако Wi-Fi-адаптер являлся обязательным компонентом. Столкнувшись с конкуренцией со стороны ультрабуков и планшетных ПК, натиск по- следних выдержали лишь компнаии Asustek и Acer, которые продавалисвои нетбуки плоть до конца 2012 года в основном на разививающихся рынках Южной Азии и Южной Африки. Эра нетбуков закончилась в 2012 г. В 2013 г. распродавались только их запасы.В 2015 году компания Microsot неожиданно для многих, кроме планшета Surface Pro 4, представила также ультрабук Surface Book. Сейчас такие устройства принято называть гибридными.Однако Microsoft называет новинку просто ноутбуком. В этом слу- чае в первую очередь обращает на себя внимание дисплей диагональю 13,5 дюйма. У него крайне необычное для ноутбуков соотношение сто- рон (3:2) и разрешение (3000 х 2000 точек).С технической точки зрения аппарат похож на новый планшет Microsoft. Тут используется корпус из того же магниевого сплава, а дисплей также располагает специальным слоем для работы со стилусом. К слову, перо Surface Pen поставляется в комплекте с новинкой.Необычным выглядит конструкция петель. Несмотря на отключае- мую планшетную часть, инженеры Microsoft наделили устройство воз- можностью раскрыть дисплей на 360°.Сердцем ноутбука служат процессоры Intel Core i5 или i7 поколе- ния Skylake. В оперативной памяти предусмотрено 8 либо 16 ГБ. Для хранения данных присутствует SSD объёмом 128, 256, 512 ГБ либо 1 ТБ. Что любопытно, в продаже будут модификации ноутбука с дискрет- ными видеокартами Nvidia. Модели не называются, но данный компо- нент расположен в клавиатурном блоке. Ёмкости аккумулятора должно быть достаточно для 12 часов в режиме проигрывания видео.Габариты ноутбука составляют 312,3 х 232,1 х 13-22,8 мм при мас- се 1,5 кг с подключенной клавиатурой. Список портов представлен па- рой USB 3.0, Mini DisplayPort и слотом для карт SD. В минимальной конфигурации ноутбук обойдётся покупателям в $1500, а за версию с процессором Core i7 и видеокартой Nvidia придётся отдать $2700.В 2009 г. разработчики и производители компьютерной техники за- говорили о новой категории компьютеров под названием смартбуки.Смартбук – это небольшой компьютер с дисплеем и клавиатурой, представляющий собой нечто среднее между смартфоном и нетбуком. По размерам он меньше нетбука, а по функциональным возможностям аналогичен смартфону. Смартбук способен обеспечивать постоянное беспроводное 3G-соединение и работать не менее 8 часов без подзаряд- ки. Он обладает экраном с диагональю от 7 до 9 дюймов и может бази- роваться на процессорах с архитектурой ARM под управлением ОС на ядре Linux, например Google Android.Статистика использования в настольных ПК и ноутбуках различ- ных ОС на декабрь 2015 г. представлена в таблице 1.2:Таблица 1.2 Статистика использования ОС на декабрь 2015 г.

2. ФУНКЦИОНАЛЬНАЯ

3. ФУНКЦИОНАЛЬНАЯ И СТРУКТУРНАЯ

4. ПРИНЦИПЫ ОРГАНИЗАЦИИ ПОДСИСТЕМЫ ПАМЯТИ ЭВМ И ВС

ОРГАНИЗАЦИЯ СИСТЕМНОГО ИНТЕРФЕЙСА И ВВОДА/ВЫВОДА ИНФОРМАЦИИ

МНОГОПРОЦЕССОРНЫЕ И МНОГОМАШИННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ

СПИСОК ЛИТЕРАТУРЫ

ОРГАНИЗАЦИЯ ЭВМ И СИСТЕМ

стей (рис. 2.16, а).

В свою очередь, эти части, что особенно характерно для адресной части, могут состоять из нескольких полей.

Операционная часть содержит код операции (КОП), который задает вид операции (сложение, умножение и др.). Адресная часть содержит информацию об адресах операндов и результате операции.

Структура команды определяется составом, назначением и рас- положением полей в команде.

Форматом команды называют ее структуру с разметкой номеров разрядов (бит), определяющих границы отдельных полей команды, или с указанием числа бит в определенных полях.

Важной и сложной проблемой при проектировании ЭВМ является выбор структуры и форматов команды, т.е. ее длины, назначения и раз- мерности отдельных ее полей. Естественно стремление разместить в команде в возможно более полной форме информацию о предписыва- емой командой операции. Однако в условиях, когда в современных ЭВМ значительно возросло число выполняемых различных операций и соответственно команд (в системе команд х86 более 500 команд) и зна- чительно увеличилась емкость адресуемой основной памяти (4 Гбайт, 6 Гбайт), это приводит к недопустимо большой длине формата команды.

Действительно, число двоичных разрядов, отводимых под код опе- рации, должно быть таким, чтобы можно было представить все выпол- няемые машинные операции. Если ЭВМ выполняет М различных опе- раций, то число разрядов в коде операции

nкоп log2 М; например, при М= 500 nкоп = 9.

Если основная память содержит S адресуемых ячеек (байт), то для явного представления только одного адреса необходимо в команде иметь адресное
поле для одного операнда с числом разрядов

nА log2 S; например, при S = 4 Гбайт nА = 32.

Отмечавшиеся ранее, характерные для процесса развития ЭВМ расширение системы (наборы) команд и увеличение емкости основной памяти, а особенно создание микроЭВМ с коротким словом, потребова- ли разработки методов сокращения длины команды. При решении этой проблемы существенно видоизменилась структура команды, получили развитие различные способы адресации информации.

Проследим изменения классических структур команд.

Чтобы команда содержала в явном виде всю необходимую инфор- мацию о задаваемой операции, она должна, как это показано на рис. 2.16, б, содержать следующую информацию:

А1, А2 – адреса операндов, А3 – адрес результата, А4 – адрес следу- ющей команды (принудительная адресация команд).

Такая структура приводит к большой длине команды (например, при М = 500, S = 4 Гб длина команды – 137 бит) и неприемлема для прямой адресации операндов основной памяти. В компьютерах с RISC- архитектурой четырехадресные команды используются для адресации операндов, хранящихся в регистровой памяти процессора.

Можно установить, что после выполнения данной команды, распо- ложенной по адресу К (и занимающей L ячеек), выполняется команда из (К + L)-й ячейки. Такой порядок выборки команды называется есте- ственным. Он нарушается только специальными командами передачи управления. В таком случае отпадает необходимость указывать в ко- манде в явном виде адрес следующей команды.

В трехадресной команде (рис. 2.16, в) первый и второй адреса ука- зывают ячейки памяти, в которых расположены операнды, а третий определяет ячейку, в

которую помещается результат операции.

Можно условиться, что результат операции всегда помещается на место одного из операндов, например первого. Получим двухадресную команду (рис. 2.16, г), т.е. для результата используется подразумевае- мый адрес.

В одноадресной команде (рис. 2.16, д) подразумеваемые адреса имеют уже и результат операции, и один из операндов. Один из операн- дов указывается адресом в команде, в качестве второго используется содержимое регистра процессора, называемого в этом случае регистром результата, или аккумулятором. Результат операции записывается в тот же регистр.

Наконец, в некоторых случаях возможно использование безадрес- ных команд (рис. 2.16, е), когда подразумеваются адреса обоих операн- дов и результата операции, например при работе со стековой памятью.

С точки зрения программиста, наиболее естественны и удобны трехадресные команды. Однако из-за необходимости иметь большее число разрядов для представления адресов основной памяти и кода опе- рации длина трехадресной команды становится недопустимо большой и ее не удается разместить в машинном слове. Следует отметить, что очень часто в качестве операндов используются результаты предыду- щих операций, хранимые в регистрах машины. По указанным причинам в современных ЭВМ применяют трехадресные команды для адресации

регистров. Обычно в ЭВМ используется несколько структур и форматов команд.

Приведенные на рис. 2.16 структуры команд достаточно схематич- ны. В действительности адресные поля команд большей частью содер- жат не сами адреса, а только информацию, позволяющую определить действительные (исполнительные) адреса операндов в
соответствии с используемыми в командах способами адресации.

а



Операционная часть


КОП

А1

А2

А3

А4



б

Адресная часть




КОП

КОП

А1

А2

А3




КОП

А1

А2



вг

д е
Рис. 2.16. Структуры команд:

а обобщенная; б четырехадресная; в трехадресная;

г двухадресная; д одноадресная; е безадресная


Способы адресации информации в ЭВМ


Существует два различных принципа поиска операндов в памяти:

ассоциативный и адресный.


Ассоциативный поиск операнда (рис. 2.17) предполагает одно- временный просмотр содержимого всех ячеек памяти для выявления кода, содержащего заданной командой ассоциативный признак (тег). Этот код и выбирается из памяти в качестве искомого операнда. В со- временных компьютерах ассоциативная выборка используется в кэш- памяти.




























Рис. 2.17. Ассоциативный поиск

Адресный поиск предполагает, что искомый операнд извлекается из ячейки, номер которой формируется на основе информации в адрес- ном поле команды (рис.2.18).



















Рис. 2.18. Адресный поиск
Ниже мы будем рассматривать только реализацию адресного прин- ципа поиска операнда. Следует различать понятия «адресный код» в ко-

манде АК и «исполнительный (физический) адрес» АИ. Адресный код это информация об адресе операнда, содержащаяся в команде. Исполни- тельный адрес это номер ячейки памяти, к которой