Файл: А. Д. Чередов, А. Н. Мальчуков.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 645

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

АРХИТЕКТУРЫ, ХАРАКТЕРИСТИКИ, КЛАССИФИКАЦИЯ ЭВМ

ПК-блокноты (ноутбуки) Все ноутбуки (notebook) классифицируются на несколько типовых разновидностей по размеру диагонали дисплея, назначению, компонов- ке составных узлов, функциональным возможностям, габаритам, весу и другим отличиям. К основным типам ноутбуков можно отнести: «за- мену настольного ПК» (Desktop Replacement), массовые ноутбуки, уль- трабуки, смартбуки.В качестве замены настольного ПК обычно позиционируются но- утбуки с диагональю экрана 17 дюймов и выше. Габариты и вес (от 3 кг и выше) портативных компьютеров весьма значительны, что делает их неудобными в переноске. Однако относительно большой размер дис- плея обеспечивает более комфортную работу, а объемистый корпус позволяет установить мощные компоненты и обеспечить им достаточ- ное охлаждение. Такие ноутбуки имеют встроенные жесткий диск, ак- кумулятор, CD или DVD-привод, порты ввода/вывода. Снаружи подсо- единяется блок питания, как у всех других ноутбуков. Одним из самых мощных и дорогих ноутбуков категории Desktop Replacement в 2015 г. является ASUS ROG G751JL с размером экрана по диагонали 17,3', с разрешение 1920х1080 точек. Процессор – Intel Core i7-4720HQ с часто- той 2,6 ГГц. Оперативная память до 32 Гбайт, видеокарта – NVIDIA GeForce GTX 965M с двумя гигабайтами собственной памяти. Вес – 4,5 кг. Стоимость $2500.Массовые ноутбуки (специального названия для данной категории ноутбуков не предусмотрено) имеют диагональ экрана 14'-16', их вес обычно укладывается в 2–3 кг, толщина оказывается чуть меньше ноут-буков «замена настольного ПК». Обычно эти модели оснащены встро- енными жестким диском и оптическим накопителем.Ультрабуки (ultrabooks) – тонкий и легкий ноутбук, обладающий ещё меньшими габаритами и весом по сравнению с обычными ноутбу- ками, но при этом – большей частью характерных черт полноценного ноутбука. Термин стал широко распространяться в 2011 году, после то- го как корпорация Intel презентовала новый класс мобильных ПК – уль- трабуки.Немного истории. Первоначально концепция мобильного компью- тера, более компактного и лёгкого, чем обычный ноутбук, появилась в 1996 году, когда корпорация Toshiba выпустила семейство ноутбуков Toshiba Libretto. Этот класс компьютеров получил наименование субно- утбуки. С тех пор в течение 15 лет субноутбуки постоянно развивались в направлении снижения габаритов и цены и увеличения вычислитель- ной мощности и длительности автономной работы от встроенной акку- муляторной батареи.15 января 2008 года Стив Джобс провёл презентацию нового сверхлёгкого субноутбука Apple MacBook Air, выполненного в сверх- тонком алюминиевом корпусе и не имевшего аналогов на тот момент. После начала продаж выяснилось, что данный субноутбук имеет повы- шенный спрос у потребителей, и вскоре стали появляться аналоги от других производителей ноутбуков: Dell Adamo, Lenovo ThinkPad X300, Samsung 900X3A, Sony Vaio Y.В мае 2011 года появился новый класс мобильных ПК – ультрабу- ки, который является дальнейшим эволюционным развитием классиче- ских субноутбуков и во многом использует идеи, реализованные в сверхтонком ноутбуке от Apple, MacBook Air.Нетбуки (netbooks) как отдельная категория ноутбуков были выде- лены из категории субноутбуков в 2008 г. компанией Intel. Размер диа- гонали экрана нетбуков – от 7' до 12,1'. Нетбуки ориентировались на просмотр веб-страниц, работу с электронной почтой и офисными про- граммами. Для этих ноутбуков были разработаны специальные энер- гоэффективные процессоры Intel Atom, VIA C7, VIA nano, AMD Geode. Малый размер экрана, небольшая клавиатура и низкая производитель- ность подобных устройств компенсировались умеренной ценой и отно- сительно большим временем автономной работы. Габариты обычно не позволяли устанавливать в нетбук дисковод оптических дисков, однако Wi-Fi-адаптер являлся обязательным компонентом. Столкнувшись с конкуренцией со стороны ультрабуков и планшетных ПК, натиск по- следних выдержали лишь компнаии Asustek и Acer, которые продавалисвои нетбуки плоть до конца 2012 года в основном на разививающихся рынках Южной Азии и Южной Африки. Эра нетбуков закончилась в 2012 г. В 2013 г. распродавались только их запасы.В 2015 году компания Microsot неожиданно для многих, кроме планшета Surface Pro 4, представила также ультрабук Surface Book. Сейчас такие устройства принято называть гибридными.Однако Microsoft называет новинку просто ноутбуком. В этом слу- чае в первую очередь обращает на себя внимание дисплей диагональю 13,5 дюйма. У него крайне необычное для ноутбуков соотношение сто- рон (3:2) и разрешение (3000 х 2000 точек).С технической точки зрения аппарат похож на новый планшет Microsoft. Тут используется корпус из того же магниевого сплава, а дисплей также располагает специальным слоем для работы со стилусом. К слову, перо Surface Pen поставляется в комплекте с новинкой.Необычным выглядит конструкция петель. Несмотря на отключае- мую планшетную часть, инженеры Microsoft наделили устройство воз- можностью раскрыть дисплей на 360°.Сердцем ноутбука служат процессоры Intel Core i5 или i7 поколе- ния Skylake. В оперативной памяти предусмотрено 8 либо 16 ГБ. Для хранения данных присутствует SSD объёмом 128, 256, 512 ГБ либо 1 ТБ. Что любопытно, в продаже будут модификации ноутбука с дискрет- ными видеокартами Nvidia. Модели не называются, но данный компо- нент расположен в клавиатурном блоке. Ёмкости аккумулятора должно быть достаточно для 12 часов в режиме проигрывания видео.Габариты ноутбука составляют 312,3 х 232,1 х 13-22,8 мм при мас- се 1,5 кг с подключенной клавиатурой. Список портов представлен па- рой USB 3.0, Mini DisplayPort и слотом для карт SD. В минимальной конфигурации ноутбук обойдётся покупателям в $1500, а за версию с процессором Core i7 и видеокартой Nvidia придётся отдать $2700.В 2009 г. разработчики и производители компьютерной техники за- говорили о новой категории компьютеров под названием смартбуки.Смартбук – это небольшой компьютер с дисплеем и клавиатурой, представляющий собой нечто среднее между смартфоном и нетбуком. По размерам он меньше нетбука, а по функциональным возможностям аналогичен смартфону. Смартбук способен обеспечивать постоянное беспроводное 3G-соединение и работать не менее 8 часов без подзаряд- ки. Он обладает экраном с диагональю от 7 до 9 дюймов и может бази- роваться на процессорах с архитектурой ARM под управлением ОС на ядре Linux, например Google Android.Статистика использования в настольных ПК и ноутбуках различ- ных ОС на декабрь 2015 г. представлена в таблице 1.2:Таблица 1.2 Статистика использования ОС на декабрь 2015 г.

2. ФУНКЦИОНАЛЬНАЯ

3. ФУНКЦИОНАЛЬНАЯ И СТРУКТУРНАЯ

4. ПРИНЦИПЫ ОРГАНИЗАЦИИ ПОДСИСТЕМЫ ПАМЯТИ ЭВМ И ВС

ОРГАНИЗАЦИЯ СИСТЕМНОГО ИНТЕРФЕЙСА И ВВОДА/ВЫВОДА ИНФОРМАЦИИ

МНОГОПРОЦЕССОРНЫЕ И МНОГОМАШИННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ

СПИСОК ЛИТЕРАТУРЫ

ОРГАНИЗАЦИЯ ЭВМ И СИСТЕМ

может осуществ- ляться по разным правилам: «первый попавшийся раздел достаточного размера»; «раздел, имеющий наименьший достаточный размер»; «раз- дел, имеющий наибольший достаточный размер». Все эти правила име- ют свои преимущества и недостатки.

По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный недостаток фрагментация памяти. Фрагмен- тация это наличие большого числа несмежных участков свободной па- мяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в од- ном из участков, хотя суммарный объем фрагментов может составить зна- чительную величину, намного превышающую требуемый объём памяти.




t0 t1 t2 t3

занятая область – свободная область

Рис. 4.13. Распределение памяти динамическими разделами


Перемещаемые разделы


Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших либо в сторону младших ад- ресов так, чтобы вся свободная память образовывала единую свободную область (рис. 4.14). В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из
одного места памяти в другое, корректируя таблицы свободных и заня- тых областей.


ОС




П1







П2











П3









П4












ОС




П1

П2

П3

П4








a b

c



Процедура

d сжатия

a+b+c+d



Рис. 4.14. Распределение памяти перемещаемыми разделами
Эта процедура называется сжатием. Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного разме- ра. В первом случае требуется меньше вычислительной работы при кор- ректировке таблиц, а во втором реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физи- ческую должно выполняться динамическим способом.

Хотя процедура сжатия и приводит к более эффективному исполь- зованию памяти, она может потребовать значительного времени, что ча- сто перевешивает преимущества данного метода.

      1. Организация виртуальной памяти



Концепция виртуальной памяти

Общепринятая в настоящее время концепция виртуальной памяти появилась достаточно давно. Она позволила решить целый ряд актуаль- ных вопросов организации вычислений. Прежде всего к числу таких во- просов относится обеспечение надежного функционирования мульти- программных систем. В любой момент времени компьютер выполняет множество процессов (или задач), каждый из которых располагает сво- им адресным пространством. Было бы слишком накладно отдавать всю физическую оперативную память какой-то одной задаче, тем более, что многие задачи реально используют только небольшую часть своего ад-

ресного пространства. Поэтому необходим механизм разделения не- большой физической памяти между различными задачами. Виртуальная память является одним из способов реализации такой возможности. Она делит физическую память на блоки и распределяет их между различны- ми задачами, при этом она предусматривает также некоторую схему за- щиты, которая ограничивает задачу теми блоками, которые ей принад- лежат. Большинство типов виртуальной памяти сокращают также время
начального запуска программы на процессоре, поскольку не весь про- граммный код и данные требуются ей в физической памяти, чтобы начать выполнение.

Другой вопрос, тесно связанный с реализацией концепции вирту- альной памяти, касается организации вычислений на компьютере задач очень большого объёма. Раньше, если программа становилась слишком большой для физической оперативной памяти, часть её необходимо бы- ло хранить во внешней памяти (на диске) и задача приспособить её для решения на компьютере ложилась на программиста. Программисты де- лили программы на части и затем определяли те из них, которые можно было бы выполнять независимо, организуя оверлейные структуры, ко- торые загружались в основную память и выгружались из неё под управ- лением программы пользователя. Программист должен был следить за тем, чтобы программа не обращалась вне отведённого ей пространства физической памяти. Виртуальная память освободила программистов от этого бремени.

Виртуальным называется такой ресурс, который для пользователя (пользовательской программы) представляется обладающим свойства- ми, которыми он в действительности не обладает. Так, например, поль- зователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную ОП. Пользователь пишет программы так, как будто в его распоряжении име- ется однородная (одноуровневая) оперативная память большого объёма, но в действительности все данные, используемые программой, хранятся на нескольких разнородных запоминающих устройствах, обычно в ОП и на дисках, и при необходимости частями перемещаются между ними. Все эти действия выполняются автоматически, без участия программи- ста, т.е. механизм виртуальной памяти является прозрачным по отноше- нию к пользователю.

Наиболее распространенными реализациями виртуальной памяти являются страничное, сегментное и странично-сегментное распределе- ние памяти (рис. 4.11).

Страничное распределение


На рис. 4.15 показана схема страничного распределения памяти.
Виртуальное адресное пространство каждого процесса делится на части, называемые виртуальными страницами, одинакового, фиксированно- го (для данной системы) размера. В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.

Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).

Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.

При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные на диск. Смежные виртуальные страницы необязательно располагаются в смежных физических страни- цах. При загрузке операционная система создает для каждого процесса информационную структуру – таблицу страниц, в которой устанавли- вается соответствие между номерами виртуальных и физических стра- ниц для страниц, загруженных в оперативную память, или делается от- метка о том, что виртуальная страница выгружена на диск (ВЗУ). Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости (вы- грузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчёта числа обращений за определён- ный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти.

В данной ситуации может быть использовано много разных крите- риев выбора, наиболее популярные из них следующие:

  • дольше всего не использовавшаяся страница;

  • первая попавшаяся страница;

  • страница, к которой в последнее время было меньше всего обра- щений.

В некоторых системах используется понятие рабочего множества