Файл: А. Д. Чередов, А. Н. Мальчуков.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 642

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

АРХИТЕКТУРЫ, ХАРАКТЕРИСТИКИ, КЛАССИФИКАЦИЯ ЭВМ

ПК-блокноты (ноутбуки) Все ноутбуки (notebook) классифицируются на несколько типовых разновидностей по размеру диагонали дисплея, назначению, компонов- ке составных узлов, функциональным возможностям, габаритам, весу и другим отличиям. К основным типам ноутбуков можно отнести: «за- мену настольного ПК» (Desktop Replacement), массовые ноутбуки, уль- трабуки, смартбуки.В качестве замены настольного ПК обычно позиционируются но- утбуки с диагональю экрана 17 дюймов и выше. Габариты и вес (от 3 кг и выше) портативных компьютеров весьма значительны, что делает их неудобными в переноске. Однако относительно большой размер дис- плея обеспечивает более комфортную работу, а объемистый корпус позволяет установить мощные компоненты и обеспечить им достаточ- ное охлаждение. Такие ноутбуки имеют встроенные жесткий диск, ак- кумулятор, CD или DVD-привод, порты ввода/вывода. Снаружи подсо- единяется блок питания, как у всех других ноутбуков. Одним из самых мощных и дорогих ноутбуков категории Desktop Replacement в 2015 г. является ASUS ROG G751JL с размером экрана по диагонали 17,3', с разрешение 1920х1080 точек. Процессор – Intel Core i7-4720HQ с часто- той 2,6 ГГц. Оперативная память до 32 Гбайт, видеокарта – NVIDIA GeForce GTX 965M с двумя гигабайтами собственной памяти. Вес – 4,5 кг. Стоимость $2500.Массовые ноутбуки (специального названия для данной категории ноутбуков не предусмотрено) имеют диагональ экрана 14'-16', их вес обычно укладывается в 2–3 кг, толщина оказывается чуть меньше ноут-буков «замена настольного ПК». Обычно эти модели оснащены встро- енными жестким диском и оптическим накопителем.Ультрабуки (ultrabooks) – тонкий и легкий ноутбук, обладающий ещё меньшими габаритами и весом по сравнению с обычными ноутбу- ками, но при этом – большей частью характерных черт полноценного ноутбука. Термин стал широко распространяться в 2011 году, после то- го как корпорация Intel презентовала новый класс мобильных ПК – уль- трабуки.Немного истории. Первоначально концепция мобильного компью- тера, более компактного и лёгкого, чем обычный ноутбук, появилась в 1996 году, когда корпорация Toshiba выпустила семейство ноутбуков Toshiba Libretto. Этот класс компьютеров получил наименование субно- утбуки. С тех пор в течение 15 лет субноутбуки постоянно развивались в направлении снижения габаритов и цены и увеличения вычислитель- ной мощности и длительности автономной работы от встроенной акку- муляторной батареи.15 января 2008 года Стив Джобс провёл презентацию нового сверхлёгкого субноутбука Apple MacBook Air, выполненного в сверх- тонком алюминиевом корпусе и не имевшего аналогов на тот момент. После начала продаж выяснилось, что данный субноутбук имеет повы- шенный спрос у потребителей, и вскоре стали появляться аналоги от других производителей ноутбуков: Dell Adamo, Lenovo ThinkPad X300, Samsung 900X3A, Sony Vaio Y.В мае 2011 года появился новый класс мобильных ПК – ультрабу- ки, который является дальнейшим эволюционным развитием классиче- ских субноутбуков и во многом использует идеи, реализованные в сверхтонком ноутбуке от Apple, MacBook Air.Нетбуки (netbooks) как отдельная категория ноутбуков были выде- лены из категории субноутбуков в 2008 г. компанией Intel. Размер диа- гонали экрана нетбуков – от 7' до 12,1'. Нетбуки ориентировались на просмотр веб-страниц, работу с электронной почтой и офисными про- граммами. Для этих ноутбуков были разработаны специальные энер- гоэффективные процессоры Intel Atom, VIA C7, VIA nano, AMD Geode. Малый размер экрана, небольшая клавиатура и низкая производитель- ность подобных устройств компенсировались умеренной ценой и отно- сительно большим временем автономной работы. Габариты обычно не позволяли устанавливать в нетбук дисковод оптических дисков, однако Wi-Fi-адаптер являлся обязательным компонентом. Столкнувшись с конкуренцией со стороны ультрабуков и планшетных ПК, натиск по- следних выдержали лишь компнаии Asustek и Acer, которые продавалисвои нетбуки плоть до конца 2012 года в основном на разививающихся рынках Южной Азии и Южной Африки. Эра нетбуков закончилась в 2012 г. В 2013 г. распродавались только их запасы.В 2015 году компания Microsot неожиданно для многих, кроме планшета Surface Pro 4, представила также ультрабук Surface Book. Сейчас такие устройства принято называть гибридными.Однако Microsoft называет новинку просто ноутбуком. В этом слу- чае в первую очередь обращает на себя внимание дисплей диагональю 13,5 дюйма. У него крайне необычное для ноутбуков соотношение сто- рон (3:2) и разрешение (3000 х 2000 точек).С технической точки зрения аппарат похож на новый планшет Microsoft. Тут используется корпус из того же магниевого сплава, а дисплей также располагает специальным слоем для работы со стилусом. К слову, перо Surface Pen поставляется в комплекте с новинкой.Необычным выглядит конструкция петель. Несмотря на отключае- мую планшетную часть, инженеры Microsoft наделили устройство воз- можностью раскрыть дисплей на 360°.Сердцем ноутбука служат процессоры Intel Core i5 или i7 поколе- ния Skylake. В оперативной памяти предусмотрено 8 либо 16 ГБ. Для хранения данных присутствует SSD объёмом 128, 256, 512 ГБ либо 1 ТБ. Что любопытно, в продаже будут модификации ноутбука с дискрет- ными видеокартами Nvidia. Модели не называются, но данный компо- нент расположен в клавиатурном блоке. Ёмкости аккумулятора должно быть достаточно для 12 часов в режиме проигрывания видео.Габариты ноутбука составляют 312,3 х 232,1 х 13-22,8 мм при мас- се 1,5 кг с подключенной клавиатурой. Список портов представлен па- рой USB 3.0, Mini DisplayPort и слотом для карт SD. В минимальной конфигурации ноутбук обойдётся покупателям в $1500, а за версию с процессором Core i7 и видеокартой Nvidia придётся отдать $2700.В 2009 г. разработчики и производители компьютерной техники за- говорили о новой категории компьютеров под названием смартбуки.Смартбук – это небольшой компьютер с дисплеем и клавиатурой, представляющий собой нечто среднее между смартфоном и нетбуком. По размерам он меньше нетбука, а по функциональным возможностям аналогичен смартфону. Смартбук способен обеспечивать постоянное беспроводное 3G-соединение и работать не менее 8 часов без подзаряд- ки. Он обладает экраном с диагональю от 7 до 9 дюймов и может бази- роваться на процессорах с архитектурой ARM под управлением ОС на ядре Linux, например Google Android.Статистика использования в настольных ПК и ноутбуках различ- ных ОС на декабрь 2015 г. представлена в таблице 1.2:Таблица 1.2 Статистика использования ОС на декабрь 2015 г.

2. ФУНКЦИОНАЛЬНАЯ

3. ФУНКЦИОНАЛЬНАЯ И СТРУКТУРНАЯ

4. ПРИНЦИПЫ ОРГАНИЗАЦИИ ПОДСИСТЕМЫ ПАМЯТИ ЭВМ И ВС

ОРГАНИЗАЦИЯ СИСТЕМНОГО ИНТЕРФЕЙСА И ВВОДА/ВЫВОДА ИНФОРМАЦИИ

МНОГОПРОЦЕССОРНЫЕ И МНОГОМАШИННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ

СПИСОК ЛИТЕРАТУРЫ

ОРГАНИЗАЦИЯ ЭВМ И СИСТЕМ

Технические и эксплуатационные характеристики ЭВМ Производительность компьютера


Основным техническим параметром ЭВМ является её производи- тельность. Этот показатель определяется архитектурой процессора, иерархией внутренней и внешней памяти, пропускной способностью системного интерфейса, системой прерывания, набором периферийных устройств в конкретной конфигурации, совершенством ОС и т.д.

Различают следующие виды производительности:

  • пиковая (предельная) – это производительность процессора без учета времени обращения к оперативной памяти (ОП) за операндами;

  • номинальная производительность процессора с ОП;

  • системная производительность базовых технических и про- граммных средств, входящих в комплект поставки ЭВМ;

  • эксплуатационная – производительность на реальной рабочей нагрузке, формируемой в основном используемыми пакетами приклад- ных программ общего назначения.

Методы определения производительности разделяются на три ос- новных группы:

  • расчетные, основанные на информации, получаемой теоретиче- ским или эмпирическим путем;

  • экспериментальные, основанные на информации, получаемой с использованием аппаратно-программных измерительных средств;

  • имитационные, основанные на моделировании и применяемые для сложных ЭВМ.

Основные единицы оценки производительности:

  • абсолютная, определяемая количеством элементарных работ, выполняемых в единицу времени;

  • относительная, определяемая для оцениваемой ЭВМ относи- тельно базовой в виде индекса производительности.


Для каждого вида производительности применяются следующие традиционные методы их определения.

Пиковая производительность (быстродействие) определяется средним числом команд типа «регистр–регистр», выполняемых в одну секунду, без учета их статистического веса в выбранном классе задач.

Номинальная производительность (быстродействие) определяет- ся средним числом команд, выполняемых подсистемой «процессор– память» с учетом их статистического веса в выбранном классе задач. Она рассчитывается, как правило, по формулам и специальным методи- кам, предложенным для процессоров определенных архитектур, и изме- ряется с помощью разработанных для них измерительных программ, ре- ализующих соответствующую эталонную нагрузку.

Для данных типов производительностей используются следующие единицы измерения:

  • MIPS (Mega Instruction Per Second) миллион команд в секунду;

  • MFLOPS (Mega Floating Operations Per Second) миллион опера- ций над числами с плавающей запятой в секунду;

  • GFLOPS (Giga Floating Operations Per Second) миллиард операций над числами с плавающей запятой в секунду;

  • TFLOPS (Tera Floating Operations Per Second) триллион операций над числами с плавающей запятой в секунду;

  • PFLOPS (Peta Floating Operations Per Second) квадриллион опера- ций над числами с плавающей запятой в секунду.

Системная производительность

измеряется с помощью синтези- рованных типовых (тестовых) оценочных программ, реализованных на унифицированных языках высокого уровня. Унифицированные тесто- вые программы используют типичные алгоритмические действия, ха-

рактерные для реальных применений, и штатные компиляторы ЭВМ. Они рассчитаны на использование базовых технических средств и поз- воляют измерять производительность для расширенных конфигураций технических средств. Результаты оценки системной производительно- сти ЭВМ конкретной архитектуры приводятся относительно базового образца, в качестве которого используются ЭВМ, являющиеся промыш- ленными стандартами систем ЭВМ различной архитектуры. Результаты оформляются в виде сравнительных таблиц, двумерных графиков и трехмерных изображений.

Эксплуатационная производительность оценивается на основа- нии использования данных о реальной рабочей нагрузке и функциони- ровании ЭВМ при выполнении типовых производственных нагрузок в основных областях применения. Расчеты делаются главным образом на уровне типовых пакетов прикладных программ текстообработки, си- стем управления базами данных, пакетов автоматизации проектирова- ния, графических пакетов и т.д.

Была создана целая процедура тестирования True Performance Initiative (процедура измерения реальной производительности – TPI). Методика TPI состоит в измерении эксплуатационной производитель- ности в трех разделах: Productivity – программные приложения; Visual Computing компьютерная визуализация; Gaming компьютерные игры.


Энергоэффективность процессора


В последнее время при сравнении процессоров пользуются отно- шением производительности к энергопотреблению, которое получило название энергоэффективность процессора. Разработчики процессо- ров предложили оценивать производительность (Р) как произведение тактовой (рабочей) частоты процессора (f) на величину k, определяю- щую количество инструкций, исполняемых процессором за один такт:

P=f·k.

Получается, что увеличить производительность можно, поднимая частоту и/или увеличивая количество инструкций, выполняемых за один такт. Первый подход ведет к увеличению энергопотребления, а второй требует использования определенной микроархитектуры про- цессора (многоядерной), в которой заложены различные технологии, направленные на повышение количества инструкций, выполняемых процессором за один такт.

Что касается энергопотребления (W), то оно вычисляется как про- изведение тактовой частоты (f) процессора на квадрат напряжения U, при котором функционирует процессорное ядро, и некоторую величину Cd (динамическая емкость), определяемую микроархитектурой процес- сора и зависящую от количества транзисторов в кристалле и их актив- ности во время работы процессора:

W=f·U2 · Cd.

Из приведенных формул вытекает следующее соотношение, опре- деляющее энергоэффективность процессора:

P/W=k/(U2 ·Cd).

Из формулы следует, что для получения наилучшего показателя разработчикам необходимо работать над оптимизацией микроархитек- туры с целью улучшения функциональности исполнительных блоков,
при этом не допуская чрезмерного увеличения динамической емкости. Что касается тактовой частоты, то, как показывают приведенные вы- кладки, на рассматриваемое соотношение она вообще не влияет. Напряжение питания ядра зависит не столько от микроархитектуры, сколько от технологических особенностей изготовления процессора.

Любой современный кристалл процессора состоит из огромного количества транзисторов, исчисляемого миллионами, необходимого для достижения высокой производительности процессора. Уменьшение размеров транзистора ведет к уменьшению напряжения питания, что, в свою очередь, снижает энергопотребление, к увеличению скорости работы и плотности размещения транзисторов на кристалле. Поэтому со времени создания первой интегральной микросхемы в 1959 г. развитие микроэлектроники идет по направлению уменьшения размеров транзи- сторов и одновременного увеличения плотности их размещения на кри- сталле. Для оценки этих параметров была введена специальная характе- ристика «Норма технологического процесса производства полупро- водниковых кристаллов», измеряемая в нанометрах (нм). В недалеком прошлом (конец 90-х гг.) кристаллы процессоров изготавливались по 130 нм нормам, затем по 90 нм, 65 нм. С 2008 г. используются 45 нм, с 2010 г. – 32 нм, с 2012 г. – 22 нм, а с 2014 г. – 14 нм нормы технологиче- ского процесса. Спроектированный в Intel по 45 нм нормам транзистор примерно на 20 % опережает своего 65 нм собрата по скоростным ха- рактеристикам и оказывается примерно на 30 % экономичнее с точки зрения затрат энергии на переключение.

Часто вместо характеристики энергопотребление используют ха- рактеристику рассеиваемая тепловая мощность процессора. Для этого используется специальный термин TDP, который