Файл: Рабочая программа по геометрии разработана в соответствии с Федеральным государственным образовательным стандартом основного общего образования, утвержденного Приказом Министерства образования и науки рф от 17..docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.11.2023
Просмотров: 51
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Контрольных работ: 1
4. Окружность и круг. Геометрические построения.
Сумма углов треугольника. Соотношение между сторонами углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Основная цель — рассмотреть новые интересные и важные свойства треугольников.
В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.
Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.
При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.
Контрольных работ: 1
5. Обобщение и систематизация знаний учащихся
Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе.
Контрольных работ: 1
8 класс:
1. Четырехугольники
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Центральные и вписанные углы. Вписанные и описанные четырехугольники Осевая и центральная симметрии.
Основная цель — изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы.
Контрольных работ: 2
2. Подобие треугольников
Подобные треугольники. Теорема Фалеса. Теорема о пропорциональных отрезках. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Свойства медианы, биссектрисы треугольника, пересекающихся хорд, касательной и секущей
Основная цель — ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
На основе признаков подобия доказывается утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.
Контрольных работ: 1
3. Решение прямоугольных треугольников
Метрические соотношения в прямоугольном треугольнике. Теорема Пифагора. Тригонометрические функции острого угла прямоугольного треугольника. Решение прямоугольных треугольников.
Основная цель: вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника и свойства, выражающие метрические соотношения в прямоугольном треугольнике и соотношения между сторонами и значениями тригонометрических функций в прямоугольном треугольнике. Запись и вывод тригонометрических формул, выражающих связь между тригонометрическими функциями одного и того же острого угла, значений синуса, косинуса, тангенса и котангенса для углов 30°, 45°, 60°, а также введение основного тригонометрического тождества. Применение всего изученного к решению прямоугольных треугольников и к решению задач.
Контрольных работ: 2
4. Многоугольники. Площадь многоугольника
Понятия многоугольника, равновеликих многоугольников и площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции.
Основная цель — расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции. Описывать многоугольник, его элементы; выпуклые и невыпуклые многоугольники. Изображать и находить на рисунках многоугольник и его элементы; многоугольник, вписанный в окружность, и многоугольник, описанный около окружности. Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для учащихся. Доказательство теоремы о сумме углов выпуклого п-угольника, площади прямоугольника, площади треугольника и площади трапеции. Применение изученных определений, теорем и формул к решению задач.
Контрольных работ: 1
5. Повторение. Решение задач
Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 8 классе.
Контрольных работ: 1
9 класс:
-
Решение треугольников
Формулировать: определения: синуса, косинуса, тангенса, котангенса угла от 0° до 180°; свойство связи длин диагоналей и сторон параллелограмма. Формулировать и разъяснять основное тригонометрическое тождество. Вычислять значение тригонометрической функции угла по значению одной из его заданных функций. Формулировать и доказывать теоремы: синусов, косинусов, следствия из теоремы косинусов и синусов, о площади описанного многоугольника. Записывать и доказывать формулы для нахождения площади треугольника, радиусов вписанной и описанной окружностей треугольника. Применять изученные определения, теоремы и формулы к решению задач
Контрольная работа № 1 «Решение треугольников»
-
Правильные многоугольники
Пояснять, что такое центр и центральный угол правильного многоугольника, сектор и сегмент круга. Формулировать определение правильного многоугольника; свойства правильного многоугольника. Доказывать свойства правильных многоугольников. Записывать и разъяснять формулы длины окружности, площади круга. Записывать и доказывать формулы длины дуги, площади сектора, формулы для нахождения радиусов вписанной и описанной окружностей правильного многоугольника. Строить с помощью циркуля и линейки правильные треугольник, четырёхугольник, шестиугольник. Применять изученные определения, теоремы и формулы к решению задач
Контрольная работа № 2 «Правильные многоугольники»
-
Декартовы координаты на плоскости
Описывать прямоугольную систему координат. Формулировать: определение уравнения фигуры, необходимое и достаточное условия параллельности двух прямых. Записывать и доказывать формулы расстояния между двумя точками, координат середины отрезка. Выводить уравнение окружности, общее уравнение прямой, уравнение прямой с угловым коэффициентом. Доказывать необходимое и достаточное условие параллельности двух прямых. Применять изученные определения, теоремы и формулы к решению задач
Контрольная работа № 3 «Декартовы координаты на плоскости»
-
Векторы
Описывать понятия векторных и скалярных величин. Иллюстрировать понятие вектора. Формулировать: определения: модуля вектора, коллинеарных векторов, равных векторов, координат вектора, суммы векторов, разности векторов, противоположных векторов, умножения вектора на число, скалярного произведения векторов; свойства: равных векторов, координат равных векторов, сложения векторов, координат вектора суммы и вектора разности двух векторов, коллинеарных векторов, умножения вектора на число, скалярного произведения двух векторов, перпендикулярных векторов. Доказывать теоремы: о нахождении координат вектора, о координатах суммы и разности векторов, об условии коллинеарности двух векторов, о нахождении скалярного произведения двух векторов, об условии перпендикулярности. Находить косинус угла между двумя векторами. Применять изученные определения, теоремы и формулы к решению задач.
Контрольная работа № 4 «Векторы»
-
Геометрические преобразования
Приводить примеры преобразования фигур. Описывать преобразования фигур: параллельный перенос, осевая симметрия, центральная симметрия, поворот, гомотетия, подобие. Формулировать: определения: движения; равных фигур; точек, симметричных относительно прямой; точек, симметричных относительно точки; фигуры, имеющей ось симметрии; фигуры, имеющей центр симметрии; подобных фигур; свойства: движения, параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии. Доказывать теоремы: о свойствах параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии, об отношении площадей подобных треугольников. Применять изученные определения, теоремы и формулы к решению задач
Контрольная работа № 5 «Геометрические преобразования»
Повторение и систематизация
учебного материала
Упражнения для повторения курса 9 класса
Контрольная работа № 6
Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Текстовые задачи
-
Решать несложные сюжетные задачи разных типов на все арифметические действия; -
строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи; -
осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию; -
составлять план решения задачи; -
выделять этапы решения задачи; -
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
В повседневной жизни и при изучении других предметов:
-
выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).
Геометрические фигуры
-
Оперировать на базовом уровне понятиями геометрических фигур; -
извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде; -
применять для решения задач геометрические факты, если условия их применения заданы в явной форме; -
решать задачи на нахождение геометрических величин по образцам или алгоритмам.
В повседневной жизни и при изучении других предметов:
-
использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.
Отношения
-
Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.
В повседневной жизни и при изучении других предметов:
-
использовать отношения для решения простейших задач, возникающих в реальной жизни.
Измерения и вычисления
-
Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов; -
применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии; -
применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.
В повседневной жизни и при изучении других предметов:
-
вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.
Геометрические построения
-
Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.
В повседневной жизни и при изучении других предметов:
-
выполнять простейшие построения на местности, необходимые в реальной жизни.
Геометрические преобразования
-
Строить фигуру, симметричную данной фигуре относительно оси и точки.
В повседневной жизни и при изучении других предметов:
-
распознавать движение объектов в окружающем мире; -
распознавать симметричные фигуры в окружающем мире.
Векторы и координаты на плоскости
-
Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости; -
определять приближенно координаты точки по ее изображению на координатной плоскости.
В повседневной жизни и при изучении других предметов:
-
использовать векторы для решения простейших задач на определение скорости относительного движения.
История математики
-
Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки; -
знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей; -
понимать роль математики в развитии России.