Файл: v22_3.2-12,13,14 Формулы.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.07.2021

Просмотров: 105

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

ТЕКСТЫ С ФОРМУЛАМИ 22


Фрагмент 1. Позиционные системы счисления

В позиционной системе счисления количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра этого числа. Например, меняя позицию цифры 7 в десятичной системе счисления, можно записать разные по величине десятичные числа, например, 7; 70; 7000; 0,07 и т.д.

В общем случае любое число N в позиционной системе счисления можно представить в виде:

где - (k –1)-ая цифра целой части числа N, записанного в системе счисления с основанием p;

- n-ая цифра дробной части числа N, записанного в системе счисления с основанием p;

k - количество разрядов в целой части числа N;

n - количество разрядов в дробной части числа N;

Максимальное число, которое может быть представлено в к разрядах

.

Минимальное число, которое может быть представлено в n разрядах

Имея в целой части числа к разрядов, а в дробной n разрядов, можно записать всего разных чисел.

С учетом этих обозначений запись числа N в любой позиционной системе счисления с основанием p имеет вид:


Фрагмент 2. Формы представления чисел в компьютере

В компьютерах применяются две формы представления двоичных чисел:

  • естественная форма или форма с фиксированной запятой (точкой);

  • нормальная форма или форма с плавающей запятой (точкой).

В естественной форме (с фиксированной запятой) все числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной.

Если используется система счисления с основанием p при наличии k разрядов в целой части и n разрядов в дробной части числа, то диапазон значащих чисел N при их представлении в форме с фиксированной запятой, определяется соотношением:

Например, при p =2, k =10, n =6 диапазон значащих чисел будет определяться следующим соотношением:

В нормальной форме (с плавающей запятой) каждое число изображается в виде двух групп цифр. Первая группа цифр называется мантиссой, вторая – порядком, причем абсолютная величина мантиссы должна быть меньше 1, а порядок – целым числом. В общем виде число в форме с плавающей запятой может быть представлено в виде:

,

где M – мантисса числа (| M | < 1);

r – порядок числа (r - целое число);

p – основание системы счисления.


Фрагмент 3. Моделирование жизненного цикла продукта

Модель описывает процесс распространения продукта. Изначально продукт никому не известен, и для того, чтобы люди начали его приобретать, он рекламируется. Влияние рекламы можно оценить ее эффективностью, т.е. степенью воздействия на людей. В итоге определенная доля людей приобретает продукт. На дальнейшее распространение продукта начинает влиять не только реклама, но и фактор общения между собой владельцев продукта и потенциальных потребителей. Этот фактор зависит от силы убеждения владельца. Процесс приобретения товара можно рассматривать как поток – «перетекание» потенциальных покупателей в «стан» владельцев. Этот поток тем сильнее, чем больше людей охвачено рекламой и чем больше людей общается с владельцами товара. Естественно, что чем больше людей уже купили товар, тем слабее становится поток, и в конце концов он «иссякает», т.е. приобретение товара заканчивается.


Математическая модель процесса описывается следующей системой алгебро-дифференциальных уравнений:

Здесь:

А - численность населения;

B - эффективность рекламы;

Cчастота контактов;

F - сила убеждения;

х - потенциальные покупатели;

yпотребители;

z - интенсивность приобретения продукта;

r - интенсивность приобретения под влиянием рекламы;

s - интенсивность приобретения под влиянием общения.




22