Файл: Нт гражданской защиты и пожарной безопасности ямалоненецкого автономного округа государственное учреждение дополнительного профессионального образования.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.11.2023
Просмотров: 40
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
19
Обращающиеся в технологическом процессе вещества и окружающая среда вступают в химическое взаимодействие с материалом, из которого изготовлено технологическое оборудование, вызывая его разрушение. Разрушение материала в результате взаимодействия с соприкасающейся с ним средой называется коррозией.
Явление коррозии чаще всего наблюдается в производствах, связанных с использованием азотной, серной, соляной кислот, уксусной кислоты и уксусного альдегида, в процессах добычи, хранения и переработки сернистых нефтей, в процессах электролиза, во время обработки жидкостей и газов, в состав которых входят галоидоводороды, кислоты, щелочи, хлористые и сернистые соли.
Значительной коррозии подвержены теплообменные поверхности, омываемые пламенем, подземные и подводные части аппаратов и трубопроводов, а также аппараты и трубопроводы, находящиеся во влажной среде.
Разрушающему действию коррозии наиболее подвержены слабые места производственного оборудования: швы, разъемные соединения, прокладки, места изгибов и поворотов труб.
Самовоспламенение – горение, происх. не от соприкосновения горючего вещ-ва с пламенем внеш. источника, а от нагревание вещ-ва до темп. самовоспламенения.
Температура самовоспламенения – самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермической реакции,
заканчивающейся пламенным горением.
Самовозгорание – горение, происходящее от нагревания вещ-в под влиянием различных внутренних процессов: физ., хим., биол....
химическое– от воздействия на горючие вещества кислорода, воздуха, воды или взаимодействия веществ;
микробиологическое – происходит при определенной влажности и температуры в растительных продуктах (самовозгорание зерна);
тепловое – вследствие долговременного воздействия незначительных источников тепла (например ,при температуре 100 С тирса ,ДВП и другие склоны к самовозгоранию).
Производственным источником зажигания являются искры, возникающие при работе топок и двигателей. Они представляют собой твердые раскаленные частицы топлива или окалины в газовом потоке, которые образуются в результате неполного сгорания или механического уноса горючих веществ и продуктов коррозии.
По природе проявления различают следующие группы источников зажигания:
открытый огонь и раскаленные продукты сгорания;
тепловое проявление механической энергии;
тепловое проявление химических реакций;
тепловое проявление электрической энергии.
20
Мероприятия, предупреждающие пожары от открытого огня и раскаленных продуктов горения:
- Изоляция аппаратов огневого действия:
- рациональное размещение на открытых площадках;
- устройство противопожарных разрывов;
- устройство между аппаратами огневого действия и газопароопасными аппаратами экранов в виде стен или отдельных закрытых линий, выполненных из негорючих материалов;
- устройство паровых завес по периметру печей с газоопасных сторон.
- Соблюдение правил пожарной безопасности при проведении огневых работ.
- Изоляция высоконагретых продуктов сгорания:
- контроль за состоянием дымовых каналов;
- защита высоконагретых поверхностей (трубопроводов, дымовых каналов)
теплоизоляцией;
- устройство противопожарных разделок и отступок и т.п.
- Защита от искр при работе топок и двигателей:
- соблюдение оптимальных температур и соотношения между топливом и воздухом в горючей смеси;
- контроль за техническим состоянием и исправностью устройств для сжигания топлива;
- систематическая очистка внутренних поверхностей топок, дымовых каналов и двигателей внутреннего сгорания от сажи и нагаромасляных отложений;
- Ограничение источников огня, не вызванных потребностями технологического процесса:
- оборудование мест для курения;
- применение горячей воды, пара, для обогрева замерзших труб;
- распаривание и очистка скребками отложений в аппаратах вместо их выжигания.
Тепловое проявление механической энергии.
При взаимном трении тел за счет совершения механической работы происходит их разогрев. При этом механическая энергия переходит в тепловую. Тепловой нагрев, т. е. температура трущихся тел в зависимости от условий трения может быть достаточной для воспламенения горючих веществ и материалов. При этом нагретые тела выступают в качестве источника зажигания.
В производственных условиях наиболее распространенными случаями опасного нагрева тел при трении являются:
удары твердых тел с образованием искр;
поверхностное трение тел;
сжатие газов.
Удары твердых тел с образованием искр.
При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называют искрами удара или трения.
Искры представляют собой нагретые до высокой температуры (раскаленные)
частицы металла или камня (в зависимости от того, какие твердые тела участвуют в соударении) размером от 0,1 до 0,5 мм и более.
Температура искр удара из обычных конструкционных сталей достигает температуры плавления металла - 1550 °С.
Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т. к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные
21
смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Наибольшую опасность в этой связи представляют ацетилен, водород,
этилен, оксид углерода и сероуглерод.
Воспламеняющая способность искры, находящейся в покое, выше летящей, так как неподвижная искра медленнее охлаждается, она отдает тепло одному и тому же объему горючей среды и, следовательно, может его нагреть до более высокой температуры. Поэтому искры, находящиеся в покое, способны воспламенить даже твердые вещества в измельченном виде (волокна, пыли).
Искры в условиях производства образуются при работе с инструментом ударного действия (гаечными ключами, молотками, зубилами и т. п.), при попадании примесей металла и камней в машины с вращающимися механизмами (аппараты с мешалками, вентиляторы, газодувки и т. п.), а также при ударах подвижных механизмов машины о неподвижные (молотковые мельницы, вентиляторы,
аппараты с откидными крышками, люками и т. п.).
Мероприятия по предупреждению опасного проявления искр от удара и трения:
Применение во взрывоопасных зонах (помещениях) применять искробезопасного инструмента.
Обдув чистым воздухом места производства ремонтных и др. работ.
Исключение попадания в машины металлических примесей и камней (магнитные уловители и камнеуловители).
Для предупреждения искр от ударов подвижных механизмов машин о неподвижные:
- тщательная регулировка и балансировка валов;
- проверка зазоров между этими механизмами;
- недопущение перегрузки машин.
Применять искробезопасные вентиляторы для транспортировки паро- и газовоздушных смесей, пылей и твердых горючих материалов.
В помещениях получения и хранения ацетилена, этилена и т.п. полы выполнять из неискрящего материала или застилать их резиновыми ковриками.
Поверхностное трение тел.
Перемещение относительно друг друга соприкасающихся тел требует затраты энергии на преодоление сил трения. Эта энергия почти целиком превращается в теплоту, которая, в свою очередь, зависит от вида трения, свойств трущихся поверхностей (их природы, степени загрязнения, шероховатости), от давления,
размера поверхности и начальной температуры. При нормальных условиях выделяющееся тепло своевременно отводится, и этим обеспечивается нормальный температурный режим. Однако при определенных условиях температура трущихся поверхностей может повыситься до опасных значений, при которых они могут стать источником зажигания.
Причинами роста температуры трущихся тел в общем случае является увеличение количества тепла или уменьшение теплоотвода. По этим причинам в технологических процессах производств происходят опасные перегревы подшипников, транспортных лент и приводных ремней, волокнистых горючих материалов при наматывании их на вращающиеся валы, а также твердых горючих материалов при их механической обработке.
Мероприятия по предупреждению опасного проявления поверхностного трения тел:
Замена подшипников скольжения на подшипники качения.
Контроль за смазкой, температурой подшипников.
22
Контроль за степенью натяжения транспортерных лент, ремней, не допущение работы машин с перегрузкой.
Замена плоскоременных передач на клиноременные.
Для предупреждения наматывания волокнистых материалов на вращающиеся валы используют:
применение свободнонасаженных втулок, кожухов и т.п. для защиты открытых участков валов от контакта с волокнистым материалом;
предотвращение перегрузки;
устройство специальных ножей для срезания наматывающихся волокнистых материалов;
установка минимальных зазоров между валом и подшипником.
При механической обработке горючих материалов необходимо:
соблюдать режим резания,
своевременно затачивать инструмент,
использовать локальное охлаждения места резания (эмульсии, масла, вода и т.п.).
Ограничение распространения пожаров в производственных зданиях достигается:
- уменьшением количества горючих веществ и материалов, одновременно обращающихся в технологическом процессе;
- выбором режима эксплуатации технологического процесса производства;
- уменьшением количества горючих отходов производства, своевременных их удалением;
- заменой горючих веществ, обращающихся в производстве, негорючими;
- аварийным сливом огнеопасных жидкостей и технологических аппаратов и трубопроводов;
- перекачкой горючих веществ из опасной зоны в менее опасную;
- применением огнезадерживающих устройств на производственных коммуникациях;
- защитой трубопроводов от горючих отложений.
Уменьшение количества горючих веществ и материалов, одновременно обращающихся в технологическом процессе, не только создает условия для ограничения возможности распространения пожара, но и снижает вероятность его возникновения.
Задача уменьшения количества горючих веществ и материалов, обращающихся в производстве, решается на всех стадиях проектирования промышленного объекта и во многом зависит от выбора технологической схемы производства.
Естественно, технологическая схема производства должна не только преследовать пожаровзрывобезопасные цели, но и быть экономически выгодной.
23
При всех прочих равных условиях выбирают, такую технологическую схему производства, при которой используется менее пожаровзрывоопасное сырье,
обеспечивается меньший расход сырья и других пожаровзрывоопасных веществ на единицу получаемой продукции, а сам технологический процесс состоит из меньшего числа производственных операций и при этом уменьшается количество образующихся побочных горючих продуктов и отходов. Оценку вариантов пожаровзрывоопасности какого-либо технологического процесса делают путем сравнения количества горючих веществ, приходящихся на единицу выпускаемой продукции.
Существуют некоторые общие условия, уменьшающие пожаровзрывоопасность технологической схемы производства. Так, вместо периодически действующих аппаратов и процессов целесообразно применять непрерывно действующие аппараты и процессы, так как при одной и той же производительности в непрерывно действующих аппаратах содержится меньшее количество горючих веществ и сами аппараты занимают меньшую площадь.
Большие возможности с точки зрения повышения пожарной безопасности производства (уменьшения количества горючих веществ) имеют проектные и научно-исследовательские организации на стадии разработки технологической схемы. На основании технологических расчетов определяют размеры и количество аппаратов так, чтобы не было необоснованного увеличения количества находящихся в них горючих веществ.
Технологическая схема, как правило, должна исключать напорные баки,
промежуточные емкости, мерники, рефлюксные емкости и тому подобные аппараты. Вместо них следует использовать автоматические регуляторы давления и расхода, мерники-дозаторы непрерывного действия, автоматические питатели и т. п.
При наличии технической возможности следует заменять в технологическом процессе легковоспламеняющиеся поглотители и растворители, катализаторы и инициаторы, а также теплоносители и хладагенты менее пожароопасными или негорючими веществами. Например, вместо пропана, аммиака, изопентана и других легковоспламеняющихся веществ, используемых для охлаждения аппаратов, целесообразно применять негорючие фреоны и рассолы.
Выбирая ту или иную технологическую схему производства, следует учесть, что уменьшению пожаровзрывоопасности способствует размещение технологического оборудования на открытых площадках и этажерках во всех случаях, когда это возможно по климатическим условиям и по условиям эксплуатации.
Размещая технологические аппараты как в зданиях, так и на открытых площадках,
следует учитывать, что производственные коммуникации (связи между аппаратами) должны быть как можно проще, иметь небольшую длину и небольшое количество встречных потоков. Рациональное размещение производственных аппаратов и трубопроводов снижает количество горючих веществ, в них обращающихся.
24
Многие производственные процессы требуют наличия небольших цеховых складов. В этом случае, исходя из потребностей и требований пожарной безопасности, устанавливают предельную емкость складов и изолируют их от технологического процесса.
Контрольные вопросы:
1. Дайте определение технологического процесса.
2. Система предотвращения пожаров.
3. Пожаровзрывоопасность веществ и материалов, используемых в технологических процессах.
4. Причины и условия образования горючей среды внутри технологического оборудования.
5. Классификация причин повреждения технологического оборудования.
6. Самовоспламенение и самовозгорание веществ и материалов.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ:
1. Федеральный закон от 21.12.1994 № 69-ФЗ «О пожарной безопасности».
2. Федеральный закон от 22.07.2008 № 123-ФЗ «Технический регламент о требованиях пожарной безопасности».
3. Правила противопожарного режима в Российской Федерации»
(утверждены Постановлением Правительства РФ № 1479 от 16.09. 2020г.)
4. Постановление Правительства Российской Федерации от 12.04.2012 № 290
(ред. от 01.12.2021) «О федеральном государственном пожарном надзоре».
5. Государственный пожарный надзор
: уч ебное пособие / С. В. Макаркин [и др.]. – Екатеринбург : Изд-во Урал. ун-та, 2015.