Файл: Тестирование программного обеспечения.rtf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 80

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.



    1. Запуск всех тестов: убедиться, что новые тесты не проходят


На этом этапе проверяют, что только что написанные тесты не проходят. Этот этап также проверяет сами тесты: написанный тест может проходить всегда и соответственно быть бесполезным. Новые тесты должны не проходить по объяснимым причинам. Это увеличит уверенность (хотя не будет гарантировать полностью), что тест действительно тестирует то, для чего он был разработан.


    1. Запуск всех тестов: убедиться, что все тесты проходят


Если все тесты проходят, программист может быть уверен, что код удовлетворяет всем тестируемым требованиям. После этого можно приступить к заключительному этапу цикла.


    1. Рефакторинг


Когда достигнута требуемая функциональность, на этом этапе код может быть почищен. Рефакторинг — процесс изменения внутренней структуры программы, не затрагивающий её внешнего поведения и имеющий целью облегчить понимание её работы, устранить дублирование кода, облегчить внесение изменений в ближайшем будущем.



    1. Стиль разработки


Разработка через тестирование тесно связана с такими принципами как

«делай проще, дурачок» (англ. keep it simple, stupid, KISS) и «вам это не понадобится» (англ. you ain’t gonna need it, YAGNI). Дизайн может быть чище и яснее, при написании лишь того кода, который необходим для прохождения теста. Кент Бек также предлагает принцип «подделай, пока не сделаешь» (англ. fake it till you make it). Тесты должны писаться для тестируемой функциональности. Считается, что это имеет два преимущества. Это помогает убедиться, что приложение пригодно для тестирования, поскольку разработчику придется с самого начала обдумать то, как приложение будет тестироваться. Это также способствует тому, что тестами будет покрыта вся функциональность. Когда функциональность пишется до тестов, разработчики и организации склонны переходить к реализации следующей функциональности, не протестировав существующую.

Идея проверять, что вновь написанный тест не проходит, помогает убедиться, что тест реально что-то проверяет. Только после этой проверки следует приступать к реализации новой функциональности. Этот прием, известный как «красный/зеленый/рефакторинг», называют «мантрой разработки через тестирование». Под красным здесь понимают не прошедшие тесты, а под зеленым - прошедшие.

Отработанные практики разработки через тестирование привели к созданию техники «разработка через приёмочное тестирование» (англ. Acceptance Test-driven development, ATDD), в котором критерии описанные заказчиком автоматизируются в приемочные тесты, используемые потом в обычном процессе разработки через модульное тестирование (англ. unit test-driven development, UTDD).[4] Этот процесс позволяет гарантировать, что приложение удовлетворяет сформулированным требованиям. При разработке через приёмочное тестирование, команда разработчиков сконцентрирована на четкой задаче: удовлетворить приемочные тесты, которые отражают соответствующие требования пользователя.


Приёмочные (функциональные) тесты (англ. customer tests, acceptance tests) — тесты, проверяющие функциональность приложения на соответствие требованиям заказчика. Приёмочные тесты проходят на стороне заказчика. Это помогает ему быть уверенным в том, что он получит всю необходимую функциональность.


    1. Преимущества


Исследование 2005 года показало, что использование разработки через тестирование предполагает написание большего количества тестов, в свою очередь, программисты, пишущие больше тестов, склонны быть более продуктивными. Гипотезы связывающие качество кода с TDD были неубедительны. Программисты, использующие TDD на новых проектах, отмечают, что они реже ощущают необходимость использовать отладчик. Если некоторые из тестов неожиданно перестают проходить, откат к последней версии, которая проходит все тесты, может быть более продуктивным, нежели отладка.

Разработка через тестирование предлагает больше, чем просто проверку корректности, она также влияет на дизайн программы. Изначально сфокусировавшись на тестах, проще представить, какая функциональность необходима пользователю. Таким образом, разработчик продумывает детали интерфейса до реализации. Тесты заставляют делать свой код более приспособленным для тестирования. Например, отказываться от глобальных переменных, одиночек (singletons), делать классы менее связанными и легкими для использования. Сильно связанный код или код, который требует сложной инициализации, будет значительно труднее протестировать. Модульное тестирование способствует формированию четких и небольших интерфейсов. Каждый класс будет выполнять определенную роль, как правило небольшую. Как следствие, зависимости между классами будут снижаться, а зацепление повышаться. Контрактное программирование (англ. design by contract) дополняет тестирование, формируя необходимые требования через утверждения (англ. assertions).

Несмотря на то, что при разработке через тестирование требуется написать большее количество кода, общее время, затраченное на разработку, обычно оказывается меньше. Тесты защищают от ошибок. Поэтому время, затрачиваемое на отладку, снижается многократно. Большое количество тестов помогает уменьшить количество ошибок в коде. Устранение дефектов на более раннем этапе разработки, препятствует появлению хронических и дорогостоящих ошибок, приводящих к длительной и утомительной отладке в дальнейшем.



Тесты позволяют производить рефакторинг кода без риска его испортить. При внесении изменений в хорошо протестированный код риск появления новых ошибок значительно ниже. Если новая функциональность приводит к ошибкам, тесты, если они, конечно, есть, сразу же это покажут. При работе с кодом, на который нет тестов, ошибку можно обнаружить спустя значительное время, когда с кодом работать будет намного сложнее. Хорошо протестированный код легко переносит рефакторинг. Уверенность в том, что изменения не нарушит существующую функциональность, придает уверенность разработчикам и увеличивает эффективность их работы. Если существующий код хорошо покрыт тестами, разработчики будут чувствовать себя намного свободнее при внесении архитектурных решений, которые призваны улучшить дизайн кода.

Разработка через тестирование способствует более модульному, гибкому и расширяемому коду. Это связано с тем, что при этой методологии разработчику необходимо думать о программе как о множестве небольших модулей, которые написаны и протестированы независимо и лишь потом соединены вместе. Это приводит к меньшим, более специализированным классам, уменьшению связанности и более чистым интерфейсам. Использование mock-объектов также вносит вклад в модуляризацию кода, поскольку требует наличия простого механизма для переключения между mock- и обычными классами.

Поскольку пишется лишь тот код, что необходим для прохождения теста, автоматизированные тесты покрывают все пути исполнения. Например, перед добавлением нового условного оператора разработчик должен написать тест, мотивирующий добавление этого условного оператора. В результате получившиеся в результате разработки через тестирование тесты достаточно полны: они обнаруживают любые непреднамеренные изменения поведения кода.

Тесты могут использоваться в качестве документации. Хороший код расскажет о том, как он работает, лучше любой документации. Документация и комментарии в коде могут устаревать. Это может сбивать с толку разработчиков, изучающих код. А так как документация, в отличие от тестов, не может сказать, что она устарела, такие ситуации, когда документация не соответствует действительности — не редкость.


    1. Слабые места


Главным недостатком TDD является то, что к нему сложно привыкнуть, из-за ряда причин, включая увеличение за счёт него времени перед написанием основного кода программ и увеличение объёма кода в целом.


1.Существуют задачи, которые невозможно (по крайней мере, на текущий момент) решить только при помощи тестов. В частности, TDD не позволяет механически продемонстрировать адекватность разработанного кода в области безопасности данных и взаимодействия между процессами. Безусловно, безопасность основана на коде, в котором не должно быть дефектов, однако она основана также на участии человека в процедурах защиты данных. Тонкие проблемы, возникающие в области взаимодействия между процессами, невозможно с уверенностью воспроизвести, просто запустив некоторый код.

2.Разработку через тестирование сложно применять в тех случаях, когда для тестирования необходимо прохождение функциональных тестов. Примерами может быть: разработка интерфейсов пользователя, программ, работающих с базами данных, а также того, что зависит от специфической конфигурации сети. Разработка через тестирование не предполагает большого объёма работы по тестированию такого рода вещей. Она сосредотачивается на тестировании отдельно взятых модулей, используя mock-объекты для представления внешнего мира.

3.Требуется больше времени на разработку и поддержку, а одобрение со стороны руководства очень важно. Если у организации нет уверенности в том, что разработка через тестирование улучшит качество продукта, то время, потраченное на написание тестов, может рассматриваться как потраченное впустую.

4.Модульные тесты, создаваемые при разработке через тестирование, обычно пишутся теми же, кто пишет тестируемый код. Если разработчик неправильно истолковал требования к приложению, и тест, и тестируемый модуль будут содержать ошибку.

5.Большое количество используемых тестов могут создать ложное ощущение надежности, приводящее к меньшему количеству действий по контролю качества.

6.Тесты сами по себе являются источником накладных расходов. Плохо написанные тесты, например, содержат жёстко вшитые строки с сообщениями об ошибках или подвержены ошибкам, дороги при поддержке. Чтобы упростить поддержку тестов следует повторно использовать сообщения об ошибках из тестируемого кода.

7.Уровень покрытия тестами, получаемый в результате разработки через тестирование, не может быть легко получен впоследствии. Исходные тесты становятся всё более ценными с течением времени. Если неудачные архитектура, дизайн или стратегия тестирования приводят к большому количеству непройденных тестов, важно их все исправить в индивидуальном порядке. Простое удаление, отключение или поспешное изменение их может привести к необнаруживаемым пробелам в покрытии тестами.





  1. Непрерывная интеграция


8.1 Понятие непрерывной интеграции
Непрерывная интеграция (англ. Continuous Integration) — это практика разработки программного обеспечения, которая заключается в выполнении частых автоматизированных сборок проекта для скорейшего выявления и решения интеграционных проблем. В обычном проекте, где над разными частями системы разработчики трудятся независимо, стадия интеграции является заключительной. Она может непредсказуемо задержать окончание работ. Переход к непрерывной интеграции позволяет снизить трудоёмкость интеграции и сделать её более предсказуемой за счет наиболее раннего обнаружения и устранения ошибок и противоречий.

Непрерывная интеграция является одним из основных приёмов экстремального программирования.


    1. Требования к проекту




  • Исходный код и всё, что необходимо для сборки и тестирования проекта, хранится в репозитории системы управления версиями;

  • Операции копирования из репозитория, сборки и тестирования всего проекта автоматизированы и легко вызываются из внешней программы.




    1. Организация


На выделенном сервере организуется служба, в задачи которой входят:

  • получение исходного кода из репозитория;

  • сборка проекта;

  • выполнение тестов;

  • развёртывание готового проекта;

  • отправка отчетов.

Локальная сборка может осуществляться:

  • по внешнему запросу,

  • по расписанию,

  • по факту обновления репозитория и по другим критериям.




    1. Сборка по расписанию


В случае сборки по расписанию (англ. daily build — рус. ежедневная сборка), они, как правило, проводятся каждой ночью в автоматическом режиме — ночные сборки (чтобы к началу рабочего дня были готовы результаты тестирования). Для различия дополнительно вводится система нумерации сборок — обычно, каждая сборка нумеруется натуральным числом, которое увеличивается с каждой новой сборкой. Исходные тексты и другие исходные данные при взятии их из репозитория (хранилища) системы контроля версий помечаются номером сборки. Благодаря этому, точно такая же сборка может быть точно воспроизведена в будущем — достаточно взять исходные данные по нужной метке и запустить процесс снова. Это даёт возможность повторно выпускать даже очень старые версии программы с небольшими исправлениями.


    1. Преимущества