Файл: Системы искусственного интеллекта, как предпосылки создания робототехники.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 190

Скачиваний: 8

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, в аэропортах, медицинских и учебных учреждениях.

По мнению основателя корпорации Microsoft Билла Гейтса, в ближайшем будущем робототехнику ожидают революционные изменения, сравнимые с прорывом в вычислительной технике, произошедшим более 30 лет назад. Microsoft сейчас также активно работает в этом направлении [14].

С робототехникой связано не менее сотни других научно-технических направлений, в первую очередь искусственный интеллект (ИИ), на базе которого делается система управления роботами. В ИИ также входит полтора десятка научных направлений, в том числе машинное зрение.

Хотя в прошлом году робототехника и включена в список национальных технологических платформ, но её роль как мегапроекта в модернизации экономики страны явно недооценена.

Важно отметить, что по западным оценкам именно робототехника в ближайшие годы будет основным потребителем продукции полупроводниковой промышленности, чем в своё время были персональные компьютеры. Кроме того, развитие этой области возможность подтянуть производство точной механики и механотроники, датчиков и др.

Работы в области военной робототехники в России ведутся, отдельные результаты соответствуют мировому уровню, однако в целом текущий уровень работ недостаточен, особенно в области военных роботов, что в период проходящей в мире смены поколения вооружений вызывает большую озабоченность.

Без перехода на использование робототехники Россия останется заложником ухудшающейся демографической ситуации и не сможет существенно поднять производительность труда и качество продукции в промышленности. Развитие домашних, социальных и медицинских роботов позволит решить проблемы обслуживания пожилых людей. Здесь видна большая социальная составляющая данного направления.

Наконец, что может быть самое важное, робототехника громадный, стремительно растущий глобальный рынок, на котором Россия практически не представлена. По некоторым оценкам, объём мирового рынка робототехники сейчас составляет 9,4 млрд. долл., однако к 2018 г. аналитики прогнозируют рост до 85 млрд. долл. во многом такие цифры будут обусловлены увеличением сектора роботов для сферы обслуживания, которые превзойдут производственный сектор. При правильной административной поддержке данного направления есть все возможности для того, чтобы объём рынка робототехники в России к 2020 г., как минимум, превысил 10 млрд. долл. [14].


Учитывая всё вышесказанное можно сказать, что необходимо:

. выделить робототехнику в одно из ключевых направлений модернизации экономики России;

2. создать в рамках Комиссии по модернизации Рабочую группу по робототехнике;

. открыть при Президенте России "Институт стратегического планирования научно-технического развития России”.

Понятно, что это начальные шаги дальнейшие должны быть разработаны ИТ-сообществом и указанными структурами.


2.2 Основные задачи и направления робототехники



В некоторых случаях, когда среда неблагоприятна для человека, применение робота было бы наиболее целесообразным. Роботам, например, не нужно потреблять кислород из окружающего воздуха. Следовательно, их можно применять под водой, в безвоздушном пространстве или в атмосфере, насыщенной отравляющими веществами.

Подвижные робототехнические устройства активно проектируются и используются для изучения Луны и планет, а неподвижные, типа "Сервейора", уже применяются на Луне. Когда придет время изучения Юпитера, ни один человек не сможет там существовать, а робот, по всей вероятности, сможет [18].

Потребность в таких устройствах возникает и значительно ближе к нам, например при обследовании и ремонте канализационных систем. Существует множество сред со слишком высокими для человеческого организма температурами. В настоящее время ведутся активные работы по проектированию робота-пожарного, который бы не только обнаруживал, но и тушил пожары. Сейчас еще многие люди страдают от заболеваний, вызванных работой в таких условиях, где температура окружающей среды либо слишком низка, либо слишком высока, либо среда слишком загрязнена или опасна для человеческого организма. Даже с точки зрения простой гуманности здесь срочно требуется внедрение роботов [18].

Взять, например, угольные шахты: современная тенденция к повышенной механизации почти наверняка приведет, в конце концов, к появлению робота-шахтера. Примером применяемого в шахтах робототехнического устройства является автоматический забойщик, который поддерживает определенную толщину угольного пласта на своде, чтобы предохранить крошащуюся породу от обвалов. Для контроля толщины используется радиоактивный датчик, состоящий из йодисто-цезиего излучателя и приемника на фотоумножителе, так что толщину невидимого угольного слоя можно поддерживать постоянной. Подсчитали, что ежегодно это устройство, стоящее 8000 фунтов стерлингов, добывает угля на сумму 130 000 фунтов стерлингов. Успешное использование таких подконтрольных роботов ведет к созданию более прогрессивных устройств типа двустороннего "Никодемуса".

Использование простейших электронных промышленных устройств позволяет освободить человека от работы в настолько загрязненной атмосфере, что для человеческого организма она едва переносима. В скором времени человеку больше не нужно будет обжигать ступни, разгружая печь для обжига кирпича, не потребуется также натягивать на себя блестящую жароотражающую одежду, чтобы приблизиться к доменной печи и выпустить из нее расплавленный металл [17].


Проектирование конечностей робота: рук и кистей в значительной степени стимулируется потребностью в таких приспособлениях в тех отраслях, где приходится иметь дело с радиоактивными и взрывчатыми веществами. Иногда по отношению к этим устройствам применяют термин "телехирик". Он заимствован из греческого и означает "отдаленная рука".

В некоторых случаях возможно дистанционное электрическое управление робототехническим устройством с помощью человека-оператора. Однако, к сожалению, встречаются и такие случаи, когда это трудно или невозможно. Например, управление робототехническим устройством на далекой планете представляется весьма сложным, так как время прохождения сигналов со скоростью света от земли до планеты составляет несколько секунд и передача информации о результатах операции также занимает несколько секунд.

Некоторые модели робототехнических устройств имеют то преимущество, что могут работать в полной темноте. Например, нет необходимости освещать туннель, по которому движется управляемый роботом почтовый поезд. Уже сейчас подвижные роботы используются для обследования внутренней поверхности дренажных и нефтяных труб малого диаметра длиной до 14 км.

В научно-фантастической литературе роботы обычно ходят, но не летают. Реальные роботоподобные устройства, к сожалению, более разнообразны. Наиболее известный пример полностью подвижного, полностью независимого робота дает управляемое оружие - роботоподобный реактивный снаряд. Эти устройства в трудных условиях обнаруживают цель и делают это намного точнее, чем любой человек [17].

В космосе летающие роботы следят за деятельностью на Земле. Там они, однако, выполняют также и более мирную работу: ретранслируют телевизионные программы и исследуют Луну. В этом отношении робот намного более разносторонен, чем человек. Эта разносторонность, вероятно, еще более возрастет, когда мы научимся производить роботов с более сложной нервной системой. Уже оказалось возможным сконструировать автопилот, который не только управляет горизонтальным полетом самолета, но и производит автоматически взлет и посадку.

Сейчас имеется дополнительная возможность создания подвижного робота, основанная на принципе работы аппарата на воздушной подушке. Этот принцип уже использовался в бытовых приборах и в газонокосилках, но еще никогда не применялся для "подвешивания" подвижных роботов. Широко используемыми разновидностями летающего робота являются поднимаемые на шарах-зондах радио - и радиолокационные системы, предназначенные для передачи на Землю необходимых для предсказания погоды данных о верхних слоях атмосферы, хотя направление перемещения определяется здесь не самой системой, а направлением ветра.


Радиоуправляемая беспилотная авиация долгое время использовалась для таких целей, как учебная стрельба, где невозможность использования пилота очевидна. Например, самолет-мишень "Королева Пчела", который использовался в начале 40-х годов ХХ века, был просто модификацией "Тигрового Мотылька" обычным образом пилотируемого биплана. "Королева Пчела" управлялась с Земли при помощи 10 кнопок или иногда от диска наподобие телефонного. Было найдено решение для весьма успешной посадки "Королевы Пчелы", снабженной поплавками взамен колес, при помощи дистанционного управления, даже если море было неспокойно. Усовершенствованный вариант этого самолета был известен под названием "Королева Оса". Системы управления, подобные этим, использовались также на радиоуправляемых быстроходных катерах-целях "Королева Утка" и "Королева Чайка". От этих систем управления впоследствии перешли к более сложной системе "Рестлес", которой также оснащались радиоуправляемые быстроходные катера. Стоящие в море на мертвом якоре катера запускались и управлялись с берега при атаке военных судов [12].

Позднее, в начале 50-х годов, в Австралии был создан самолет-мишень "Индвик". Он мог взлететь с управляемой от гироскопа тележки многократного применения. Пневматический привод снабжался воздухом, хранящимся под давлением около 14 000 кПа, после фильтрации и понижения давления приблизительно до 4000 кПа. Электрическая энергия для "Индвика" поступала от генератора постоянного тока с параллельным возбуждением, параллельно которому подключался работающий вхолостую 12-батарейный свинцово-кислотный аккумулятор. Основное энергоснабжение обеспечивалось газотурбинным двигателем. В дальнейшем было проведено много новых разработок, вплоть до создания проектов использования беспилотной авиации в бою.

Были проведены исследования проектов роботов разового применения и дистанционно управляемых манипуляторов, предназначенных для выполнения работ вне космического корабля при отсутствии челночных систем, которые могут перевозить ремонтников к спутникам, находящимся на орбите. Возможность создания дистанционно управляемых космических роботов была быстро реализована; действительно, уже "Сервейор-3", осуществивший беспилотный лунный полет, был оснащен "копателем", управляемым с Земли. Оказалось возможным собрать образцы лунной породы и уложить их с отклонением в пределах 6 мм от требуемой позиции. Однако потенциальная ценность такого дистанционного манипулирования была практически продемонстрирована в январе 1968 г. "Сервейором-7", когда копатель был использован для устранения неожиданно возникшей на Луне неисправности одного из приборов [12].