Файл: Системы искусственного интеллекта, как предпосылки создания робототехники.docx
Добавлен: 07.11.2023
Просмотров: 196
Скачиваний: 8
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Глава 1. Системы искусственного интеллекта, как предпосылки создания робототехники
1.1 Теоретические основы систем искусственного интеллекта
1.2 Прикладные задачи систем искусственного интеллекта
1.3 История развития робототехники
Глава 2. Перспективы развития робототехники
.1 Современное состояние роботизации
В Аргонской национальной лаборатории обнаружили, что оператор, "сняв пиджак" и используя копирующий манипулятор, способен на то же, что и оператор, находящийся в космосе. В обоих случаях для выполнения задания требуется в три раза больше времени, чем, если бы оно выполнялось непосредственно рукой человека. Дистанционные манипуляторы были предложены для любых космических применений, где есть опасность для людей либо требуется выносливость, где получается выигрыш в стоимости и массе, или просто повышается вероятность успеха. Такие дистанционные манипуляторы были названы андроидальными телеоператорами, или, для краткости, андроидами, но хочется надеяться, что термин "андроид" не получит широкого распространения, поскольку он имеет весьма специальное и вполне определенное значение.
У космического манипулятора, предлагаемого в настоящее время, семь движений: одно для захватывания, три переносных и три угловых. У манипулятора "Сервейора" четыре движения, каждое с шаговым управлением с Земли. Единственной формой обратной связи к оператору является неподвижное изображение, на обработку которого затрачивается около 1 мин. Управление, поэтому замедленное. Обычно манипуляторы двустороннего действия, т.е. имеющие обратную связь к оператору, приводят к затратам приблизительно в 310 раз большего времени на выполнение задания, чем при работе вручную, в то время как манипуляторам одностороннего действия без обратной связи требуется примерно в 30100 раз больше времени на выполнение этого же задания. Однако за обратную связь приходится расплачиваться дополнительной массой около 45 кг [18].
Исследования привели к предварительному проекту стандартизованного электрического космического манипулятора общего назначения для использования при полетах, как с экипажем, так и без него. Обычно такой летательный аппарат должен произвести стыковку со спутником, чтобы передать груз, открыть люки, заменить электронные модули спутника и отстыковаться от него после проверки системы. От этого аппарата требуется выполнять такую работу, по меньшей мере, 10 раз в два года. Он должен удерживать максимальное сжатие в течение 30 с, не допуская превышения температуры в 100° С. Время задержки в передаче сигналов управления должно быть между 0,24 и 1,0 с. Исследования показывают, что такие требования выполнимы.
Конструкция, опубликованная в конце 1969 г., содержала две руки, по одной с каждой стороны телевизионной камеры. Общая масса летательного аппарата, включая топливо, составляла почти 450 кг; при этом номинальная мощность и пиковая мощность были соответственно 200 и 1000 Вт. Кроме того, на аппарате могла устанавливаться камера крупного плана на полужестком креплении. Подобные исследования приближают время, когда мы будем готовы послать в космос настоящих роботов, которые будут передавать нам информацию, но уже без непосредственного управления каждым их движением.
Наличие задержек управления делает совершенно очевидной необходимость создания именно такого полунезависимого робота, который выполняет общие команды и не требует поэлементного управления.
Космическая робототехника одно из самых перспективных направлений развития современной космонавтики. Возникнув на стыке пилотируемой и беспилотной космонавтики, она быстро сформировалась в самостоятельное направление, переживающее в настоящее время бурное развитие.
Робототехнической системой космического назначения является любой робот (или их совокупность), объединяющий в себе интеллектуальную подсистему управления, подсистему сенсоров, исполнительные органы, подсистему связи и телекоммуникаций. Основным назначением такого робота (или их совокупности) является автоматизация работ при функционировании орбитальных станций, космических аппаратов и их группировок в космическом пространстве, а также применение научно-исследовательских комплексов на поверхности Луны и планет Солнечной системы [14].
Космическая робототехника существенно расширяет функциональные возможности беспилотных космических аппаратов, доводя их практически до уровня пилотируемых кораблей. В пилотируемой же космонавтике робототехника позволяет существенно помочь космонавтам при работах, например, в открытом космосе, а также полностью освободить их от работы в условиях интенсивных ионизирующих излучений.
В целом космическая робототехника открывает новые горизонты не только для развития традиционных средств космонавтики, но и для создания принципиально новых типов космических аппаратов, совмещающих достоинства пилотируемых и беспилотных аппаратов. Особенно актуально это будет при исследовании других небесных тел.
Космическая робототехника уже сегодня позволяет резко повысить эффективность космических полетов, снизить расходы на их эксплуатацию, существенно расширить их функциональные возможности, на порядок увеличить ресурс и надежность, повысить безопасность космонавтов.
К основным робототехническим системам космического назначения относятся манипуляторы, планетоходы, устройства для работы внутри и снаружи космических кораблей (их обслуживание, регламентные и ремонтные работы) и другие.
Ниже приведены примеры роботов, использовавшихся и используемых в космических исследованиях.
Бортовой манипулятор "Канадарм-2"
Бортовой манипулятор "Канадарм-2" предназначен для перемещения полезных грузов из грузового отсека кораблей многоразового использования системы "Спейс Шаттл" к различным местам Международной космической станции (МКС), а также для транспортировки грузов и астронавтов снаружи станции во время выходов в открытый космос. Манипулятор также используется в случае необходимости детального осмотра расположенных далеко от обитаемых модулей элементов МКС. Разработан специалистами канадской компании MacDonald Dettwiler and Associates (MDA) по заказу NАSА. Конструктивно состоит из двух "плеч", соединенных "локтевым суставом", и двух захватов-эффекторов LEE (Latching End-Effectors) - A и B, соединенных с "плечами" "запястьевыми суставами". Эксплуатируется в настоящее время.
Планетоходы
Все планетоходы представляют собой автоматизированные самоходные комплексы, предназначенные для исследований на поверхности планет и других небесных тел. Различаются составом бортового оборудования, системами управления и связи, а также местом их использования (до настоящего времени Луна или Марс, в перспективе - на поверхности любого небесного тела, за исключением звезд).
В период с 1970 года до 2007 года на поверхность Луны и Марса были доставлены и функционировали там следующие планетоходы:
1. "Луноход-1" (1970 г.) и "Луноход-2" (1973 г.) автоматизированные комплексы, созданные специалистами НПО им. С.А. Лавочкина при участии ВНИИТРАНСМАШ. Успешно функционировали в течение нескольких месяцев на поверхности Луны
, доказав тем самым саму возможность создания подобных образцов техники.
2. Марсоход "Суинджер" (1997 г.) разработан и изготовлен кооперацией предприятий США под руководством Лаборатории реактивного движения по заказу NАSА. В течение трех месяцев работал на поверхности Марса.
. Марсоходы "Спирит" и "Оппортунити" разработаны и изготовлены кооперацией предприятий США под руководством Лаборатории реактивного движения по заказу NАSА. Работают на поверхности Марса уже более трех лет. В самое ближайшее время прогнозируется создание и доставка на поверхность небесных тел планетоходов, созданных в России, США, Китае [14].
Шагающий адаптивный робот "Циркуль"
Шагающий адаптивный робот "Циркуль" предназначен для выполнения инспекций и других манипуляционных операций в труднодоступных технологических зонах: обслуживание и сборка космических станций, осмотр и ремонт трубопроводов и другого оборудования и т.д. Разработан в ЦНИИ робототехники и технической кибернетики (г. Санкт-Петербург).
Основные особенности:
1. комбинирование перемещения путем шагания и манипулирования объектами;
2. мультиконтроллерная сетевая архитектура системы управления, размещенная в шарнирах манипулятора и конструктивно объединенная с механикой и бесколлекторным электроприводом;
. единая четырехпроводная информационно-энергетическая линия с вращающимися токосъемниками в шарнирах.
Функциональная модель космического манипулятора для проведения технологических операций в открытом космосе.
Функциональная модель космической робототехнической системы предназначена для проведения наземной стендовой отработки сборочных, транспортных, ремонтных и прочих операций, необходимость в которых возникает при строительстве и функционировании орбитальных космических станций. Разработана в ЦНИИ робототехники и технической кибернетики (г. Санкт-Петербург).
Преимущества по сравнению с другими аналогичными устройствами: модульное построение, иерархическая структура системы управления, открытая структура программного обеспечения, оперативное планирование выполнения полетных операций.
Рабочие операции робота:
1. элементарные операции сопряжения (захват универсальным захватом, соединение разъемов, закручивание винтов и т.п.);
2. сборочные работы, обслуживание грузового отсека (смена блоков, загрузка в бункер, замена узлов, осмотр рабочей зоны);
. ремонт и обслуживание отсеков.
"Персональный помощник астронавта" (Personal Satellite Assistant, PSA)
Малоразмерное устройство, способное перемещаться во внутренних объемах кораблей и станций за счет миниатюрных реактивных двигателей. Предназначено для "информационной поддержки" астронавтов при их работе с бортовым оборудованием. Разработка ведется специалистами Исследовательского центра NASA имени Эймса.
Устройство оснащено датчиками атмосферы, измеряющими почти все ее параметры. Может служить средством непосредственной связи астронавтов и наземных центров управления полетом. Может работать автономно и по командам с Земли.
"Робонаут" (Robonaut)
Телеуправляемый робот-кентавр, представляющий собой новое поколение высокомобильных манипуляторов для работы в открытом космосе. Предназначен для оказания помощи астронавтам при работе в открытом космосе в экстремальных ситуациях (вспышка на Солнце, работа в зоне радиационных поясов и прочее) или когда астронавт не может выполнить те или иные операции в силу физиологических ограничений человеческого организма. Может перемещать грузы значительной массы с ювелирной точностью. Работа ведется совместно NASA и Управлением перспективных проектов Министерства обороны США (DARPA). Проект находится в стадии проработки [14].
Приведенные выше примеры лишь малая часть того, что делалось, делается, и будет делаться в космической робототехнике.
Вместе с тем, говоря о сегодняшних достижениях космической робототехники, нужно понимать, что мы находимся лишь в начале пути. Возрастание состава задач, выполняемых с использованием робототехнических систем космического назначения, а также повышение требований к качеству их решения делает необходимым формирование адекватной концепции их развития.
Основными направлениями развития робототехнических систем космического назначения на ближайшую перспективу являются решение функциональных, технологических, сервисных и организационных задач, возникающих в ходе космических полетов, по результатам которых и должны быть сформулированы технические требования к перспективным робототехническим системам космического назначения.
Как показал опыт внедрения робототехника, является новой формой технической и организационной ячейки, наиболее полно отвечающей потребностям современного производства. Робототехника гибкая, экономная и рациональная форма обработки деталей и изделий более высокой стоимости и лучшего качества средними и малыми сериями. Робототехника реализует стремление к снижению напряженности человека в работе, связанной с необходимостью приноравливаться к циклу машины, приводит к замене конвейерных линий сборочными бригадами, в основу управления которыми положен бригадный подряд.