Файл: Лекция 1 Основы математического моделирования.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 60

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Так как Ре = RePr, то в случае вязкой жидкости критерий Нуссельта может быть представлен функцией любых двух из трех аргументов Ре, Re, Pr.

Ясно, что при наличии трех и более безразмерных комбинаций параметров построение полуэмпирической ММ существенно усложняется. В этом случае обычно выделяют так называемый определяемый критерий (в примере 2.3 это Ki или Nu), a остальные критерии относят к определяющим и проводят несколько серий экспериментальных измерений для установления функциональной зависимости определяемого критерия от двух или более определяющих, рассматриваемых в качестве аргументов искомой функции (в (2.10) это функции ). В каждой серии измерений размерные параметры изменяют таким образом, чтобы изменялось значение лишь одного из определяющих критериев. Тогда обработка результатов такой серии измерений позволяет выявить функциональную зависимость определяемого критерия от одного из аргументов при фиксированных значениях остальных. В итоге в некоторой области изменения значений определяющих критериев удается с некоторой степенью приближения построить искомую функцию, т.е. решить задачу идентификации полуэмпирической ММ.

Отметим, что применение П-теоремы к аналитической ММ, представленной в виде уравнений, позволяет привести их к безразмерной форме и сократить число параметров, характеризующих изучаемый ТО. Это упрощает качественный анализ и позволяет еще до проведения количественного анализа оценить влияние отдельных факторов (см. Д.2.2). Кроме того, безразмерная форма ММ дает возможность представить в более компактном виде результаты ее количественного анализа.

2.6. Особенности функциональных моделей

Одной из характерных особенностей функциональной математической модели (ММ) является наличие или отсутствие среди ее параметров случайных величин. При наличии таких величин ММ называют
стохастической, а при их отсутствии — детерминированной.

Далеко не все параметры реальных технических объектов (ТО) можно характеризовать вполне определенными значениями. Поэтому ММ таких ТО, строго говоря, следует отнести к стохастическим. Например, если изучаемый ТО является изделием массового производства и его внутренние параметры могут принимать случайные значения в пределах допусков, установленных относительно номинальных значений, то и выходные параметры ТО будут случайными величинами. Случайными могут быть и значения

внешних параметров при воздействии на ТО таких факторов, как порывы ветра, турбулентные пульсации, сигналы на фоне шума и т.п.

Для анализа стохастических ММ необходимо использовать методы теории вероятностей, случайных процессов и математической статистики. Однако основная трудность их примене­ния обычно связана с тем, что вероятностные характеристики случайных величин (математические ожидания, дисперсии, законы распределения) часто не известны или известны с невысокой точностью, т.е. ММ не удовлетворяет требованию продуктивности ММ. В таких случаях эффективнее использовать ММ, более грубую по сравнению со стохастической, но и более устойчивую по отношению к недостоверности исходных данных, т.е. в большей мере удовлетворяющую требованию робастности.

Существенным признаком классификации ММ является их возможность описывать изменение параметров ТО во времени. Рассмотренная в примере 2.4 ММ теплообмена тела с окружа­ющей средой учитывает такое изменение, и ее относят к нестационарным (или эволюционным) математическим моделям. Если при этом в ММ отражено влияние инерционных свойств ТО, то ее обычно называют динамической. В противоположность этому ММ, которая не учитывает изменение во времени параметров ТО, называют статической. Рассмотренные в примерах 2.2 и 2.3 ММ являются статическими. Несмотря на движение воздушного потока и жидкости, обтекающих профиль крыла и нагреваемое тело соответственно, все параметры, характеризующие эти процессы остаются постоянными во времени.

Если изменение параметров ТО происходит столь медленно, что в рассматриваемый фиксированный момент времени этим изменением можно пренебречь, то говорят о квазистатической математической модели. Например, в медлен­но протекающих механических процессах можно пренебречь инерционными силами, при малой скорости изменения температуры — тепловой инерцией тела, а при медленно изменя­ющейся силе тока в электрической цепи — индуктивностью элементов этой цепи.
Стационарные математические модели описывают ТО, в которых протекают так называемые установившиеся процессы, т.е. процессы, в которых инте­ресующие нас выходные параметры постоянны во времени. К установившимся относят и периодические процессы, в кото­рых некоторые выходные параметры остаются неизменными, а остальные претерпевают колебания. Например, ММ математического маятника (см. пример 2.1) является стационарной по отношению к не зависящим от времени периоду и полуразмаху колебаний, хотя материальная точка перемещается во времени относительно положения равновесия.

Если интересующие нас выходные параметры ТО изменя­ются медленно и в рассматриваемый фиксированный момент времени таким изменением можно пренебречь, то говорят о квазистационарной математической модели. При опи­сании некоторых процессов нестационарная ММ может быть преобразована в квазистационарную соответствующим выбо­ром системы координат. Например, при дуговой электросварке температурное поле в свариваемых стальных листах в окрест­ности движущегося с постоянной скоростью электрода в непо­движной системе координат описывает нестационарная ММ, а в подвижной системе координат, связанной с электродом, — квазистационарная ММ.

Важным с точки зрения последующего анализа свойством ММ является ее линейность. В линейной математической модели ТО его параметры связаны линейными соотношения­ми. Это означает, что при изменении какого-либо внешнего (или внутреннего) параметра ТО линейная ММ предсказывает линейное изменение зависящего от него выходного параметра, а при изменении двух или более параметров — сложение их вли­яний, т.е. такая ММ обладает свойством суперпозиции (от латинского слова superpositio — наложение). Если ММ не обла­дает свойством суперпозиции, то ее называют нелинейной.

Для количественного анализа линейных ММ разработано большое число математических методов, тогда как возможно­сти анализа нелинейных ММ связаны в основном с методами вычислительной математики. Чтобы для исследования нели­нейной ММ ТО можно было использовать аналитические ме
тоды, ее обычно линеаризуют, т.е. нелинейные соотношения между параметрами заменяют приближенными линейными и получают так называемую линеаризованную математическую модель рассматриваемого ТО. Так как линеаризация связана с внесением дополнительных погрешностей, то к результатам анализа линеаризованной модели следует относиться с определенной осторожностью. Дело в том, что линеаризация ММ может привести к утрате или существенному искажению реальных свойств ТО. Учет в ММ нелинейных эффектов особенно важен, например, при описании смены форм движения или положений равновесия ТО, когда малые изменения внешних параметров могут вызвать качественные изменения в его состоянии.

Каждый параметр ТО может быть двух типов — непрерывно изменяющимся в некотором промежутке своих значе­ний или принимающим только некоторые дискретные значения. Возможна и промежуточная ситуация, когда в одной области параметр принимает все возможные значения, а в другой — только дискретные. В связи с этим выделяют непрерывные, дискретные и смешанные математические модели. В процессе анализа ММ этих типов могут быть преобразованы одна в другую, но при таком преобразовании следует контро­лировать выполнение требования адекватности ММ рассма­триваемому ТО.

2.7. Иерархия математических моделей и формы их представления

При математическом моделировании достаточно сложного технического объекта (ТО) описать его поведение одной ма­тематической моделью (ММ), как правило, не удается, а если такая ММ и была бы построена, то она оказалась бы слиш­ком сложной для количественного анализа. Поэтому к таким ТО обычно применяют принцип декомпозиции. Он состоит в условном разбиении ТО на отдельные более простые бло­ки и элементы, допускающие их независимое исследование с последующим учетом взаимного влияния блоков и элементов друг на друга. В свою очередь, принцип декомпозиции можно применить и к каждому выделенному блоку вплоть до уровня достаточно простых элементов. В таком случае возникает ие­рархия ММ связанных между собой блоков и элементов.

Иерархические уровни выделяют и для отдельных типов