ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.11.2021

Просмотров: 546

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

підвищення жорсткості коливних конструкцій великих розмірів;

усунення низькочастотних вібрацій;

внесення конструктивних змін в будову джерел, що дозволяє перейти з області інфразвукових коливань в область звукових; в цьому випадку їх зниження може бути досягнуте застосуванням звукоізоляції та звукопоглинання.

Ультразвук широко використовується в багатьох галузях промисловості. Джерелами ультразвуку є генератори, котрі працюють в діапазоні частот від 12 до 22 кГц для обробки рідких розплавів, очищення відливок, в апаратах для очищення газів. В гальванічних цехах ультразвук виникає під час роботи очищувальних та знежирювальних ванн. Його вплив спостерігається на віддалі 25—50 м від обладнання. При завантажуванні та розвантажуванні деталей має місце контактний вплив ультразвуку.

Ультразвукові генератори використовуються також при плазмовому та дифузійному зварюванні, різанні металів, при напилюванні металів.

Ультразвук високої інтенсивності виникає під час видалення забруднень, при хімічному травленні, обдуванні струменем стисненого повітря при очищенні деталей, при збиранні .

Під час промивання та знежирення деталей використовується ультразвук в діапазоні від 16 до 44 кГц інтенсивністю до (6—7)104 Вт/м2, а при контролі складальних з'єднань — в діапазоні частот понад 80 кГц.

Ультразвукові коливання поширюються у всіх згаданих вище середовищах з частотою понад 16000 Гц.

Ультразвук викликає функціональні порушення нервової системи, головний біль, зміни кров'яного тиску та складу і властивостей крові, зумовлює втрату слухової чутливості, підвищену втомлюваність.

Ультразвук впливає на людину через повітря, а також через рідке і тверде середовище.

Для захисту від ультразвуку, котрий передається через повітря, застосовується метод звукоізоляції. Звукоізоляція ефективна в області високих частот. Між обладнанням та працівниками можна встановлювати екрани. Ультразвукові установки можна розташовувати в спеціальних приміщеннях. Ефективним засобом захисту є використання кабін з дистанційним керуванням, розташування обладнання в звукоізольованих укриттях. Для укриттів використовують сталь, дюралюміній, оргскло, текстоліт, личковані звукопоглинальними матеріалами.

Звукоізолюючі кожухи на ультразвуковому обладнанні повинні мати блокувальну систему, котра вимикає перетворювачі при порушенні герметичності кожуха.

У випадку дії ультразвуку захист забезпечується засобами віброізоляції. Використовують віброізолюючі покриття, гумові рукавиці, гумові килимки.

Вібрація серед всіх видів механічних впливів для технічних об'єктів найбільш небезпечна. Знакозмінні напруження, викликані вібрацією, сприяють накопиченню пошкоджень в матеріалах, появі тріщин та руйнуванню. Найчастіше і досить швидко руйнування об'єкта настає при вібраційних впливах за умов резонансу. Вібрації викликають також й відмови машин, приладів.


Вібрація викликає порушення фізіологічного та функціонального станів людини. Стійкі шкідливі фізіологічні зміни називають вібраційною хворобою. Симптоми вібраційної хвороби проявляються у вигляді головного болю, заніміння пальців рук, болю в кистях та передпліччі, виникають судоми, підвищується чутливість до охолодження, з'являється безсоння. При вібраційній хворобі виникають патологічні зміни спинного мозку, серцево-судинної системи, кісткових тканин та суглобів, змінюється капілярний кровообіг.

Функціональні зміни, пов'язані з дією вібрації на людину-оператора -— погіршення зору, зміни реакції вестибулярного апарату, виникнення галюцинацій, швидка втомлюваність. Негативні відчуття від вібрації виникають при прискореннях, що складають 5% прискорення сили ваги, тобто при 0,5 м/с2. Особливо шкідливі вібрації з частотами, близькими до частот власних коливань тіла людини, більшість котрих знаходиться в межах 6...30 Гц.

Резонансні частоти окремих частин тіла наступні:

очі —22...27

горло — 6...12

грудна клітка — 2... 12

ноги, руки — 2...8

голова — 8...27

обличчя та щелепи — 4...27

  • пояснична частина хребта — 4... 14

живіт — 4...12

Вібрації. - це механічні коливання машин, механізмів та їх елементів.

За способом передачі на тіло людини вібрацію поділяють на:

  • загальну, яка передається через опорні поверхні на тіло людини,

  • локальну, котра передається через руки людини.

У виробничих умовах часто зустрічаються випадки комбінованого впливу вібрації — загальної та локальної.

Загальну вібрацію за джерелом її виникнення поділяють на:

транспортну, котра виникає внаслідок руху по дорогах;

транспортно-технологічну, котра виникає при роботі машин, які виконують технологічні операції в стаціонарному положенні або при переміщенні по спеціально підготовлених частинах виробничих приміщень, виробничих майданчиків;

технологічну, що впливає на операторів стаціонарних машин або передається на робочі місця, які не мають джерел вібрації.

Найпростішим видом вібрацій є гармонічні (синусоїдальні) коливання, які описуються рівнянням:

де X - зміщення від положення рівноваги, м;

А - амплітуда, м;

w - циклічна частота, w= 2 t;

f - частота коливання, Гц.

Миттєве значення швидкості гармонічного коливання визначається як перша похідна зміщення за часом:

миттєве значення прискорення - як друга похідна зміщення за часом:

Органи відчуття людини приймають не миттєве значення параметрів вібрацій, а діюче. Діюче значення коливальної швидкості визначається як середньоквадратичне миттєвих значень швидкості V(t) за час прискорення Т:

Характеристиками вібрацій є рівень коливальної швидкості LV і коливального прискорення La, які визначаються за формулами, дБ:

де V - середньоквадратичне значення коливальної швидкості, м/с;


V0=5-10-8 м/с - порогове значення коливальної швидкості;

а - середньоквадратичне значення коливального прискорення, м/с2;

а0= 3-10-4 м/с2 - порогове значення коливального прискорення.

Загальні методи боротьби з вібрацією базуються на аналізі рівнянь, котрі описують коливання машин у виробничих умовах і класифікуються наступним чином:

  • зниження вібрацій в джерелі виникнення шляхом зниження або усунення збуджувальних сил;

  • відлагодження від резонансних режимів раціональним вибором приведеної маси або жорсткості системи, котра коливається;

  • вібродемпферування — зниження вібрацій за рахунок сили тертя демпферного пристрою, тобто переведення коливної енергії в тепло;

  • динамічне гасіння, тобто введення в коливну систему додаткових мас або збільшення жорсткості системи;

  • віброізоляція — введення в коливну систему додаткового пружного зв'язку, з метою послаблення передавання вібрацій, суміжному елементу конструкції або робочому місцю;

  • використання індивідуальних засобів захисту.

Зниження вібрації в джерелі її виникнення досягається шляхом зменшення сили, яка викликає коливання. Тому ще на стадії проектування машин та механічних пристроїв потрібно вибирати кінематичні схеми, в котрих динамічні процеси, викликані ударами та прискореннями, були б виключені або знижені. Зниження вібрації може бути досягнуте зрівноваженням мас, зміною маси або жорсткості, зменшенням технологічних допусків при виготовленні і складанні, застосуванням матеріалів з великим внутрішнім тертям. Велике значення має підвищення точності обробки та зниження шорсткості поверхонь, що труться.

Відлагодження від режиму резонансу. Для послаблення вібрацій істотне значення має запобігання резонансним режимам роботи з метою виключення резонансу з частотою змушувальної сили. Власні частоти окремих конструктивних елементів визначаються розрахунковим методом за відомими значеннями маси та жорсткості або ж експериментальне на стендах.

Резонансні режими при роботі технологічного обладнання усуваються двома шляхами: зміною характеристик системи (маси або жорсткості) або встановленням іншого режиму роботи (відлагодження резонансного значення кутової частоти змушувальної сили).

Вібродемпферування. Цей метод зниження вібрацій реалізується шляхом перетворення енергії механічних коливань коливної системи в теплову енергію. Збільшення витрат енергії в системі здійснюється за рахунок використання в якості конструктивних матеріалів з великим внутрішнім тертям: пластмас, металогуми, сплавів марганцю та міді, нікелетитанових сплавів, нанесення на вібруючі поверхні шару пружнов'язких матеріалів, котрі мають великі втрати на внутрішнє тертя. Найбільший ефект при використанні вібродемпферних покриттів досягається в області резонансних частот, оскільки при резонансі значення впливу сил тертя на зменшення амплітуди зростає.


Найбільший ефект вібродемпферні покриття дають за умови, що протяжність вібродемпферного шару співрозмірна з довжиною хвилі згину в матеріалі конструкції. Покриття необхідно наносити в місцях де генерується вібрація максимального рівня. Товщина вібродемпферних покриттів береться рівною 2—3 товщинам елемента конструкції, на котру воно наноситься.

Добре демпферують коливання мастильні матеріали. Шар мастила між двома спряженими елементами усуває можливість їх безпосереднього контакту, а відтак — появу сил поверхневого тертя, котрі є причиною збудження вібрацій.

Віброгасіння. Для динамічного гасіння коливань використовуються динамічні віброгасїї пружинні, маятникові, ексцентрикові, гідравлічні. Вони являють собою додаткову коливну систему з відповідною масою. Такий віброгасій кріпиться на вібруючому агрегаті і налаштовується таким чином, що в ньому в кожний момент часу збуджуються коливання, котрі знаходяться в протифазі з коливаннями агрегату. Недоліком динамічного гасія є те, що він діє лише при певній частоті, котра відповідає його резонансному режиму коливань.

Для зниження вібрацій застосовуються також ударні віброгасїї маятникового, пружинного і плаваючого типів. В них здійснюється перехід кінетичної енергії відносного руху елементів, що контактують, в енергію деформації з поширенням напружень із зони контакту по елементах, що взаємодіють. Внаслідок цього енергія розподіляється по об'єму елементів віброгасія, котрі зазнають взаємних ударів, викликаючи їх коливання. Одночасно відбувається розсіювання енергії внаслідок дії сил зовнішнього та внутрішнього тертя. Віброгасії камерного типу призначені для перетворення пульсуючого потоку газу в рівномірний. Такі віброгасії встановлюються на всмоктувальній та нагнітальній сторонах компресорів, на гідроприводах. Вони забезпечують значне зниження рівня вібрацій трубо- та газопроводів.

Динамічне віброгасіння досягається також встановленням агрегату на масивному фундаменті. Маса фундаменту підбирається таким чином, щоб амплітуда коливань підошви фундаменту не перевищувала 0,1—0,2 мм.

Віброізоляція полягає у зниженні передачі коливань від джерела збудження до об'єкта, що захищається, шляхом введення в коливну систему додаткового пружного зв'язку. Цей зв'язок запобігає передачі енергії від коливного агрегату до основи або від коливної основи до людини або до конструкцій, що захищаються.

Віброізоляція реалізується шляхом встановлення джерела вібрації на віброізолятори. У комунікаціях повітропроводів розташовуються гнучкі вставки. Застосовуються пружні прокладки у вузлах кріплення повітропроводів, в перекриттях, несучих конструкціях будівель, в ручному механізованому інструменті.

Для віброізоляції стаціонарних машин з вертикальною змушувальною силою використовують віброізолювальні опори у вигляді прокладок або пружин. Однак можлива їх комбінація. Комбінований віброізолятор поєднує пружинний віброізолятор з пружною прокладкою. Пружинний віброізолятор пропускає високочастотні коливання, а комбінований забезпечує необхідну ширину діапазону коливань, що гасяться. Пружні елементи можуть бути металевими, полімерними, волокнистими, пневматичними, гідравлічними, електромагнітними.


Засоби індивідуального захисту від вібрації застосовуються у випадку, коли розглянуті вище технічні засоби не дозволяють знизити рівень вібрації до норми. Для захисту рук використовуються рукавиці, вкладиші, прокладки. Для захисту ніг — спеціальне взуття, підметки, наколінники. Для захисту тіла — нагрудники, пояси, спеціальні костюми.

З метою профілактики вібраційної хвороби для працівників рекомендується спеціальний режим праці. Наприклад, при роботі з ручними інструментами загальний час роботи в контакті з вібрацією не повинен перевищувати 2/3 робочої зміни. При цьому тривалість безперервного впливу вібрації, включаючи мікропаузи, не повинна перевищувати 15—20 хв. Передбачається ще дві регламентовані перерви для активного відпочинку.

Всі, хто працює з джерелами вібрації, повинні проходити медичні огляди перед вступом на роботу і періодично, не рідше 1 разу на рік.

Для вимірювання вібрацій широко використовуються електричні вібровимірювальні прилади, принцип дії котрих базується на перетворенні кінематичних параметрів коливного руху в електричні величини, котрі вимірюються та реєструються за допомогою електричних приладів.

Найчастіше використовуються п'єзоелектричні перетворювачі віброприскорення — акселерометри та механічні вібрографи ВР-1.

Електромагнітні випромінювання і поля. Випромінювання оптичного діапазону. Біосфера впродовж усієї еволюції знаходилась під впливом електромагнітних полів, так званого фонового випромінювання, викликаного природними причинами. У процесі індустріалізації людство додало до цього цілий ряд факторів, посиливши фонове випромінювання. В зв'язку з цим ЕМП антропогенного походження почали значно перевищувати природний фон і дотепер перетворились у небезпечний екологічний фактор.

Усі електромагнітні поля та випромінювання діляться на природні та антропогенні.


Електромагнітні поля та випромінювання:

Природні Антропогенні

Е лектричне поле Землі Радіохвилі ВЧ та УВЧ діапазону

Магнітне поле Землі НВЧ випромінювання


Е лектромагнітне поле Землі ІЧ випромінювання


Світлові промені


Лазерне випромінювання

ЕМП природного походження. Навколо Землі існує електричне поле напруженістю у середньому 130 В/м, яке зменшується від середніх широт до полюсів та до екватора, а також за експоненціальним законом з віддаленням від земної поверхні. Спостерігаються річні, добові та інші варіації цього поля, а також випадкові його зміни під впливом грозових розрядів, опадів, завірюх, пилових бур, вітрів.

Наша планета також має магнітне поле з напруженістю 47,3 А/м на північному, 39,8 А/м — на південному полюсах, 19,9 А/м — на магнітному екваторі. Це магнітне поле коливається з 80-річним та 11-річним циклами змін.

Земля постійно знаходиться під впливом ЕМП, які випромінює Сонце, у діапазоні в основному 10 МГц... 10 ГГц. Спектр сонячного випромінювання досягає і більш короткохвильової області, яка включає в себе інфрачервоне (ІЧ), видиме, ультрафіолетове (УФ), рентгенівське та гамма-випромінювання. Інтенсивність випромінювання змінюється періодично, а також швидко та різко збільшується при хромосферних спалахах.