Файл: Закон Ньютона. В качестве 1 закона Ньютоном был взят закон инерции Г. Галилея, который был сформулирован и обоснован нами ранее существуют инерциальные системы отсчета, т е..docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 108

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


34. Диэлектрик (изолятор) — вещество, плохо проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3эВ. Это значит, что электроны в атомах начинают вращаться по вытянутым орбитам. В результате, на нашем рисунке левая поверхность имеет отрицательный заряд, а правая поверхность имеет положительный заряд. Между  этими зарядами внутри диэлектрика возникает своё электрическое поле, которое назовём внутренним. Таким образом, внутри пластинки диэлектрика будут одновременно два поля- внешнее и внутреннее, противоположные по направлению. Напряжённость результирующего электрического поля равна напряжённости большего поля минус напряженность меньшего поля.

35. Постоя́нный ток, DC (англ. direct current — постоянный ток) — электрический ток, параметры, свойства, и направление которого не изменяются (в различных смыслах) со временем.

36. Силой тока называется физическая величина  , равная отношению количества заряда  , прошедшего за некоторое время   через поперечное сечение проводника, к величине этого промежутка времени.



Сила тока в системе СИ измеряется в Амперах.

По закону Ома сила тока   для участка цепи прямо пропорциональна приложенному напряжению   к участку цепи и обратно пропорциональна сопротивлению 
 проводника этого участка цепи :



 — где e — заряд электрона, n — концентрация частиц, S — площадь поперечного сечения проводника,   — средняя скорость упорядоченного движения электронов.
Единица измерения в СИ — 1 Ампер (А) = 1 Кулон / секунду.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.



Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление;

U — разность электрических потенциалов на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Величина тока на участке цепи прямо пропорциональна напряжению приложенному к этому участку и обратно пропорциональна его сопротивлению.

 

 I- величина (сила) тока



U- напряжение R - сопротивление

из закона Ома получаем

37.: Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Электрический ток возникает в замкнутой цепи под действием источника электрической энергии (источника тока).

ЭДС-Источник электрической энергии представляет собой прибор, преобразующий какой-либо вид энергии в электрическую. Он создает и поддерживает на своих зажимах разность потенциалов. Таким образом в проводящей среде создается электрическое поле, которое и вызывает упорядоченное, направленное движение носителей электрических зарядов, т. е. электрический ток.

Происхождение электрического тока сопровождается непрерывным расходованием энергии на преодоление сопротивления. Эту энергию доставляет источник электрической энергии, в котором происходит процесс преобразования механической, химической, тепловой или других видов энергии в электрическую.

Способность источника электрической энергии создавать и поддерживать на своих зажимах определенную разность потенциалов называется электродвижущей силой, сокращенно э. д. с.

Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи.

Если источник энергии, совершая работу A, обеспечивает перенос по всей замкнутой цепи заряда q, то его электродвижущая сила (Е) будет равна


 

 За единицу измерения электродвижущей силы в системе СИ принимается вольт (в).

38. Электрический ток нагревает проводник. Это явление нам хорошо известно. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле:
    А = U·I·t.

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцом[1].

В словесной формулировке звучит следующим образом[2]

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:



где   — мощность выделения тепла в единице объёма,   — плотность электрического тока,   — напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка


В математической форме этот закон имеет вид





где dQ — количество теплоты, выделяемое за промежуток времени dtI — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:



Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

39. Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры.

 Собственной проводимостью полупроводников называется проводимость, обусловленная движением под действием электрического поля одинакового числа свободных электронов и дырок, образовавшихся вследствие перехода электронов полупроводника из валентной зоны в зону проводимости. В идеальном полупроводнике при собственной проводимости концентрации электронов (ni) и дырок (pi) равны и много меньше числа уровней в валентной зоне и зоне проводимости. Поэтому свободные электроны занимают уровни вблизи дна зоны проводимости Ec, а свободные дырки - вблизи потолка валентной зоны Ev (рис. 1). При этом:

ni = pi = A exp(-DE/2kT),  (1)

где A=4,82Ч1015T 3/2(mn*mp*/m2)3/4;

mn*, mp* - эффективные массы электрона и дырки;

m - масса электрона;

k - постоянная Больцмана;

DE - ширина запрещенной зоны полупроводника;

T - абсолютная температура (дыркам приписывается эффективная масса mp, равная по абсолютной величине эффективной массе того электрона, который занял бы это валентное состояние, но с противоположным знаком; эффективная масса электрона в валентной зоне вблизи Ev отрицательна).

 Примесная проводимость полупроводников