Файл: Искусственный интеллект основные понятия и история возникновения.pptx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 67

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Термин «искусственный интеллект» (ИИ; англ. AI —«Artificial Intelligence») был предложен в 1956 г. на семинаре с аналогичным названием в Дартмутском колледже (США).

Термин интеллект (intelligence) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека.

Система считается интеллектуальной, если в ней реализованы следующие три базовые функции:

В состав системы искусственного интеллекта входят следующие компоненты:

База знаний (БЗ) – это совокупность фактов и правил вывода, допускающих логический вывод и осмысленную обработку информации. Текст по ширине по всему тексту

Компонент обработки внешней и внутренней информации выполняют анализ текущих изменений информации, для получения которой может быть использован искусственный интеллект (ИИ).

Компонент обучения и самообучения позволяет формировать дополнительные знания для базы знаний, которые получены в процессе обучения и самообучения и отсутствовали в ней по неизвестной причине.

Компонент контроля и диагностики выполняет проверку о наличии знаний в БЗ, диагностируют их и подсказывают правильные решения.

Если классифицировать интеллектуальные информационные системы по критерию «используемые методы», то они делятся на жесткие, мягкие и гибридные (рис. 4)

Мягкие вычисления (Soft Computing) – это сложная компьютерная методология, основанная на нечеткой логике, генетических вычислениях, нейрокомпьютинге и вероятностных вычислениях.

Жесткие вычисления – традиционные компьютерные вычисления (не мягкие).

Гибридные системы – системы, использующие более чем одну компьютерную технологию (в случае интеллектуальных систем – технологии искусственного интеллекта).

Возможны и другие классификации, например, выделяют системы общего назначения и специализированные системы (рисунок 5).

Рассмотрим главные или, что более правильно, сущностные отличия задач, решаемых на ЭВМ с помощью методов искусственного интеллекта, от обычных задач, решаемых традиционными методами и способами.

1. Степень использования человеческого интеллекта.

2. Полнота априорной информации Добавить слайд, везде шрифты 24

а) физические законы, определяющие силы, действующие на летательный аппарат;

3. «Продвинутость» задач.

Рассмотрим характерные особенности данного процесса.

- Человеческий мозг хранит огромное количество фактов и правил их использования. Для достижения определенной цели надо только обратиться к нужным фактам и правилам.

Список используемой литературы

ИИ адаптируется благодаря алгоритмам прогрессивного обучения, чтобы дальнейшее программирование осуществлялось на основе данных. ИИ обнаруживает в данных структуры и закономерности, которые позволяют алгоритму освоить определенный навык: алгоритм становится классификатором или предикатором. Таким образом, по тому же принципу, по которому алгоритм осваивает игру в шахматы, он может научиться предлагать подходящие продукты онлайн. При этом модели адаптируются по мере поступления новых данных. Обратное распространение — это метод, который обеспечивает корректировку модели посредством обучения на базе новых данных, если первоначальный ответ оказывается неверным. ИИ осуществляет более глубокий анализ больших объемов данных с помощью нейросетей со множеством скрытых уровней. Несколько лет назад создание системы обнаружения мошенничества с пятью скрытыми уровнями было практически невозможным. Все изменилось с колоссальным ростом вычислительных мощностей и появлением «больших данных». Для моделей глубокого обучения необходимо огромное количество данных, так как именно на их основе они и обучаются. Поэтому чем больше данных, тем точнее модели. Глубинные нейросети позволяют ИИ достичь беспрецедентного уровня точности. К примеру, работа с Alexa, поисковой системой Google Search и сервисом Google Photos осуществляется на базе глубокого обучения, и чем чаще мы используем эти инструменты, тем эффективнее они становятся. В области здравоохранения диагностика раковых опухолей на снимках МРТ с помощью технологий ИИ (глубокое обучение, классификация изображений, распознавание объектов) по точности не уступает заключениям высококвалифицированных рентгенологов. ИИ позволяет извлечь максимальную пользу из данных. С появлением самообучающихся алгоритмов сами данные становятся объектом интеллектуальной собственности. Данные содержат в себн нужные ответы — нужно лишь найти их при помощи технологий ИИ. Поскольку сейчас данные играют гораздо более важную роль, чем когдалибо ранее, они могут обеспечить конкурентное преимущество. При использовании одинаковых технологий в конкурентной среде выиграет тот, у кого наиболее точные данные.

Рассмотрим главные или, что более правильно, сущностные отличия задач, решаемых на ЭВМ с помощью методов искусственного интеллекта, от обычных задач, решаемых традиционными методами и способами.

1. Степень использования человеческого интеллекта.

Как известно, традиционно решаемые на ЭВМ задачи требуют максимально полного использования интеллекта (способностей, знаний) при выборе метода и составлении алгоритма решения задачи. При этом на ЭВМ возлагается лишь задача правильного выполнения (или реализации) разработанного человеком алгоритма. Напротив, решение задач с привлечением методов искусственного интеллекта (или задач, решаемых системами искусственного интеллекта) основывается не только на использовании знаний человека, но и дополнительных знаниях, полученных самой ЭВМ. Методы и структурные решения, лежащие в основе получения (вывода) знаний, являются предметом рассмотрения сравнительно молодой науки (ей не более 50 лет), называемой искусственным интеллектом.

2. Полнота априорной информации Добавить слайд, везде шрифты 24

Традиционно решаемые на ЭВМ задачи (разумеется речь идет не о простых задачах, а о достаточно сложных) требуют для своего успешного решения большого объема априорной информации о закономерностях поведения исследуемого объекта или процесса. Например, если рассматривается движение летательного аппарата в атмосфере, то должны быть точно известны:

а) физические законы, определяющие силы, действующие на летательный аппарат;

б) полученные на их основе математические состояния (математическая модель объекта), определяющие реакцию летательного аппарата (изменение его высоты, скорости полета и т.п.) на эти силы и на управляющие воздействия со стороны системы управления летательным аппаратом. На практике это весьма сложно обеспечить, учитывая существенную нестационарность условий полета (внешних и внутренних). Действительно, для современных летательных аппаратов характерен большой диапазон изменения характеристик атмосферы, возможность возникновения нештатных (или критических) ситуаций как в атмосфере (грозы, смерчи, турбулентные потоки и т.п.), так и на борту летательного аппарата (отказы оборудования, неправильные действия летчиков). Заранее все это при разработке алгоритма управления сложно предусмотреть. Поэтому, «жесткие» алгоритмы управления современными летательными аппаратами не обеспечивают требуемой эффективности (в том числе боевой) их применения. Интеллектуальные или «мягкие» алгоритмы управления, основанные на применении методов искусственного интеллекта («мягких» вычислений), существенно снижают требования к объему необходимой априорной информации за счет ее доопределения интеллектуальной системой непосредственно в процессе функционирования (в режиме on-line).

3. «Продвинутость» задач.

На сегодняшний день практически все ЭВМ имеют фон-неймановскую архитектуру, основанную на функциональных принципах построения дискретных вычислений, изложенных в работах Ч. Бэббиджа, Поста, А.Тьюринга. Это накладывает определенные ограничения на класс задач, решаемых на ЭВМ. В частности, решение задач должно допускать возможность описания его с помощью некоторого алгоритма. В свою очередь, это означает, что на ЭВМ могут быть реализованы только алгоритмические процедуры, допускающие представление в виде совокупности базовых (элементарных) операций (в современных ЭВМ это сложение и сдвиг). Однако с помощью алгоритмов и алгоритмических процедур в классическом понимании можно автоматизировать решение только т.н. «рутинных» задач, не связанных с получением качественно новой информации (новых знаний), а связанных с организацией вычислительной процедуры их решения при условии, что априорно имеется вся необходимая для этого информация. Решение же более содержательных по смыслу (более интеллектуальных задач) только с помощью алгоритмических процедур невозможно.

Рассмотрим характерные особенности данного процесса.

- Деятельность человека всегда целесообразна, т.е. связана с достижениями некоторой цели. Это означает, что мыслительные процессы человека направлены на достижение цели (цель заставляет человека думать).

- Человеческий мозг хранит огромное количество фактов и правил их использования. Для достижения определенной цели надо только обратиться к нужным фактам и правилам.

- Принятие решений всегда осуществляется на основе специального механизма упрощения, позволяющего отбрасывать ненужные (малосущественные) факты и правила. Не имеющие отношения к решаемой в данный момент задаче и, наоборот, выделять главные, наиболее значимые факты и правила, нужные для достижения цели. - Достигая цели, человек не только приходит к решению поставленной перед ним задачи, но и одновременно приобретает новые знания. Та часть интеллекта, которая позволяет ему делать соответствующие заключения (выводы) на основании правил, сформулированных человеком, а также генерировать новые факты из уже существующих, называется механизмом логического вывода. Так, типовая схема решения математической задачи часто выглядит следующим образом. Выбираются неизвестные величины, подлежащие определению. На основании анализа условий (ограничений), содержащихся в исходной формулировке задачи, составляется система уравнений, связывающих указанные неизвестные. Далее, применяя какой либо из стандартных методов решения полученных уравнений, находим искомое решение задачи. Заметим, то, решив один раз
конкретную задачу по описанной схеме, мы решим (и гораздо быстрее) другую подобную (и даже более сложную) задачу, отличающуюся значениями исходных данных, числом неизвестных, формой представления условий и т.д. Поскольку система ИИ принимает решения аналогично тому, как это делает человек, то она должна включать в себя следующие ключевые элементы – цель, факты и данные. Правила, механизмы вывода и упрощения. Все эти компоненты системы ИИ показаны на рис. 6. на этом же рисунке выделена база знаний, которая содержит всю располагаемую информацию о внешнем мире (моделях решаемых задач).
Рисунок 6 - Компоненты системы ИИ.

Список используемой литературы

  • Бонровская, Н. А. Основы искусственного интеллекта: учебное пособие// Н.А. Бонровская, Н.А. Давыдова –М. Лаборатория знаний – 2020 г. [Электронный ресурс]. Режим доступа: https://www.rulit.me/data/programs/resources/pdf/Osnovy-iskusstvennogo-intellekta_RuLit_Me_643478.pdf
  • Иванов, В. М. Интеллектуальные системы : учебное пособие / В. М. Иванов. — Екатеринбург : Изд-во Урал. ун-та, 2015. — 92 с.
  • Павлов, С. Н.Системы искусственного интеллекта : учеб. пособие. В 2-х частях. / С. Н. Павлов. — Томск: Эль Контент, 2011. — Ч. 1. — 176 c. [Электронный ресурс]. Режим доступа: https://asu.tusur.ru/learning/books/b09.pdf
  • Рассел, С. Искусственный интеллект : современный подход : пер. с англ. / С. Рассел, П. Норвиг ; пер. К. А. Птицын. - 2-е изд. - М. : Вильямс, 2018. - 1407 с.
  • Родзин С.И. Искусственный интеллект: Учебное пособие. –Таганрог ИКТИБ ЮФУ, 2015. - 148 с. [Электронный ресурс]. Режим доступа: http://ntb.tgn.sfedu.ru/UML/UML_5632.pdf