Файл: Гранулометрический (механический) состав породы.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 193

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1) Гранулометрический (механический) состав пород (ситовой анализ, седиментационный анализ, микроскопический анализ шлифов).

Гранулометрический (механический) состав породы - количественное, как правило, массовое содержание в породе частиц различной крупности. Им в значительной степе­ни определяются многие свойства породы: пористость, прони­цаемость, удельная поверхность, капиллярные свойства и т. п.

В процессе эксплуатации скважин на основании грануломет­рического состава подбирают фильтры, предотвращающие вы­нос песка из пласта в скважину.

Гранулометрический состав горной породы определяют сито­вым и седиментационным анализами. Ситовый анализ применя­ется для фракционирования частиц размером более 0,05 мм. Содержание частиц меньшего размера находят седиментационным анализом.

Ситовый анализ закл-ся в след. - высушенный образец породы массой 40-50 г дробят на кусочки, не разрушая отдельных зерен, и обра­батывают 10%-ным раствором соляной кислоты для удаления карбонатов. После этого образец растирают пробкой в форфоровой чашке с одновременной промывкой водой для удаления глинистой фракции. Отмытую породу высушивают, взвешивают и просеивают через набор сит в течение 15 мин. Оставшиеся на каждом сите фракции взвешивают. Суммарная масса фракций должна совпадать с начальной массой отмытой высушенной породы.

Наиболее распространенные методы седиментационного ана­лиза — пипеточный метод, метод отмучивания потоком воды и метод взвешивания осадка. При использовании пипеточного ме­тода навеску породы высыпают в цилиндр, заполненный жид­костью, и тщательно перемешивают. Затем через различные промежутки времени с нескольких глубин пипеткой отбирают пробы жидкости вместе с находящимися на этом уровне части­цами породы. Пробы помещают в фарфоровый тигель, выпари­вают и определяют сухую массу фракции. Диаметр частиц в данной пробе вычисляют по формуле Стокса, зная глубину от­бора пробы и время осаждения частиц.

При отмучивании потоком воды грунт помещают в кониче­ский или цилиндрический сосуд, через который направляют снизу вверх воду. Ступенчатым увеличением скорости течения воды добиваются выноса из сосуда частиц различного диаметра, значение которого рассчитывают по формуле Стокса.

Под гранулометрическим (механическим) составом
 породы (кернов) понимают количественное содержание в них частиц различной величины в процентах по весу. Механический состав пород определяют ситовым и седиментационным анализом. Разделение песчаных фракций (с размерами частиц от 0.074 мм до 2-3 мм) производится просеиванием через наборы сит с соответственными отверстиями – так называемый ситовой анализ. Разделение более мелких частиц производится гидравлическими методами, основанными либо на различии скорости осаждения частиц разного размера в спокойной воде, либо на способности струи различной скорости течения увлекать частицы разного размера.

От грансостава зависят такие важные свойства по­ристой среды как пористость, проницаемость, удельная поверхность, капиллярные свойства и т. д. Часто гранулометрический состав горных пород, именно терригенных, а их в земной коре в осадочном комплексе до 85-95 %, позволяет решить так называемую обратную задачу, а именно - изучить прошлое суши, что облегчает поиск нефти и газа, а также других полезных ископаемых.
2) Пористость (первичные и вторичные поры, открытая, закрытая и общая пористость, коэффициент пористости, классификация по размеру пор, единица измерения, определение открытой пористости).

Под пористостью горной породы понимается наличие в ней пор (пустот). Пористость характеризует способность горной породы вмещать жидкости и газы.

В зависимости от происхождения различают следующие виды пор:

Поры между зёрнами обломочного материала (межкристаллические). Это первичные поры, образовавшиеся одновременно с формированием породы.

Поры растворения – образовались в результате циркуляции подземных вод.

Пустоты и трещины, образованные за счёт процессов растворения минеральной составляющей породы активными флюидами и образование карста.

Поры и трещины, возникшие под влиянием химических процессов, например, превращение известняка (СаСО3) в доломит (МgСО3) – при доломитизации идёт сокращение объёмов породы на 12%.

Пустоты и трещины, образованные за счёт выветривания, эрозионных процессов, закарстовывания.

Виды пор (2)-(5) – это так называемые вторичные поры, возникшие при геолого-химических процессах.

Объём пор зависит от:

формы зёрен;

сортировки зёрен (чем лучше отсортирован материал, тем выше пористость);

размера зёрен;

укладки зёрен – при кубической укладке пористость составляет  47,6%, при ромбической укладке – 25,96%



однородности и окатанности зёрен;

вида цемента 

Горные породы, содержащие нефть, газ и воду и способные отдавать их при разработке, называются коллекторами. Коллекторские свойства нефтеносных пластов зависят от размера и формы зерен, слагающих породу, степени отсорбированности обломочного материала, характера и степеней цементации осадков, а карбонатных пород - от пористости и трещиноватости.

Породы - коллекторы характеризуются пористостью, проницаемостью и трещиноватостью. Пористость горной породы характеризуется наличием в ней пустот (пор), являющихся вместилищем для жидкостей (воды, нефти) и газов, находящихся в недрах Земли.

Общая (полная, абсолютная) пористость – суммарный объём всех пор (Vпор), открытых и закрытых.

Пористость открытая эквивалентна объёму сообщающихся (Vсообщ) между собой пор.

На практике для характеристики пористости используется коэффициент пористости (m), выраженный в долях или в процентах.
3) Проницаемость (абсолютная, фазовая, относительная, линейный закон фильтрации, физический смысл единицы проницаемости, типичный вид кривых фазовых проницаемостей, определение абсолютной проницаемости)

Проницаемость горных пород - важнейший параметр, характеризующий проводимость коллектора, т.е. способность пород пласта пропускать сквозь себя жидкость и газы при наличии перепада давления.

При эксплуатации нефтяных и газовых месторождений в пористой среде движутся нефть, газ, вода или, скажем, их смеси. В зависимости от того, что движется в пористой среде и каков характер движения, пропорциональность одной и той же среды может быть различной. Поэтому для характеристики проницаемости нефтесодержащих пород введены понятия абсолютной, эффективной (или фазовой) и относительной проницаемости.

Абсолютная проницаемость - проницаемость пористой среды при движении в ней лишь одной какой-либо фазы (газа или однородной жидкости).

Фазовая (эффективная) проницаемость - проницаемость породы для одного газа или жидкости при содержании в породе многофазных систем.

Относительная проницаемость - отношение фазовой проницаемости данной пористой среды к абсолютной ее проницаемости. За единицу проницаемости принимается - проницаемость такой пористой среды, при фильтрации через образец которой площадью в 1 м2 и длиной 1 м, при перепаде давления 1 Па расход жидкости вязкостью 1Па·с составляет 1м3 /с.

Отношение эффективной проницаемости (Ko, Kw) к абсолютной (KoSwir).


Kro = Ko / KoSwir

Krw = Kw / KoSwir

В промысловых исследованиях для оценки проницаемости обычно пользуются практической единицей – мкм2·10-3 (микрометр квадратный).

Проницаемость естественных нефтяных коллекторов изменяется в очень широком диапазоне значений даже в пределах одного и того же пласта. Приток нефти и газа к забою скважин наблюдается в пластах с высоким пластовым давлением даже при незначительной проницаемости пород (1020 мкм2·10-3 и менее). Проницаемость большинства нефтеносных и газоносных пластов составляет обычно несколько сот мкм2·10-3.

На проницаемость влияет характер напластования пород.

При эксплуатации нефтяных и газовых месторождений в пористой среде движутся нефть или газ (при наличии в порах воды), или многофазные системы (вода, нефть и газ одновременно). В этих условиях проницаемость породы для одной какой-либо фазы всегда будет меньше абсолютной проницаемости этой породы. При этом величина эффективной (фазовой) проницаемости зависит от нефте-, газо- и водонасыщенности породы. Так, при водонасыщенности примерно 20% проницаемость породы для нефти падает, в то время как движение воды в порах почти не наблюдается. При водонасыщенности 80% движение нефти (газа) практически прекращается и фильтруется только вода.

Вывод: необходимо предохранять нефтяные пласты от преждевременного обводнения и предотвращать прорыв вод к забоям нефтяных скважин.

Некоторое влияние на относительную проницаемость различных фаз оказывают физико-химические свойства жидкостей, проницаемость пород, градиент давления.

Источники данных о проницаемости

гидродинамические исследования, данные эксплуатации,

лабораторные исследования на образцах пористой среды (керна), в условиях максимально приближённых к пластовым,

использование данных о схожем пласте,

математические модели (эмпирические зависимости),

корреляционные зависимости по данным ГИС.
4) Капиллярные свойства (смачиваемость, краевой угол, гидрофильные и гидрофобные коллектора, капиллярное давление, подъём жидкости в капмлляре);

Смачиванием называется совокупность явлений на границе соприкосновения трёх фаз, одна из которых обычно является твёрдым телом и две другие – не смешиваемые жидкости или жидкость и газ.

Капля жидкости может растекаться по поверхности, если поверхность хорошо смачивается, а если поверхность плохо смачивается, то капля растекаться не будет.


Интенсивность смачивания характеризуется величиной краевого угла смачивания , образованного поверхностью твёрдого тела с касательной, проведённой к поверхности жидкости из точки её соприкосновения с поверхностью.

Существуют также переходные поверхности (амфотерные), которые хорошо смачиваются как полярными, так и неполярными системами.

К гидрофильным поверхностям относятся силикаты, карбонаты, окислы железа. К гидрофобным поверхностям – парафины, жиры, воск, чистые металлы.

Краевой угол смачивания зависит от строения поверхности, адсорбции жидкостей и газов, наличия ПАВ, температуры, давления, электрического заряда.

5) Удельную поверхность;

Удельная поверхность пористых тел зависит от степени дисперсности частиц, из которых они слагаются. Вследствие небольших размеров отдельных зерен песка и большой плотности их укладки поверхность норового пространства пласта может достигать огромных размеров, что значительно осложняет задачу полного извлечения нефти из породы. Проницаемость, адсорбционная способность, содержание остаточной (реликтовой) воды и т. д. зависят от удельной поверхности нефтеносных пород. Очень важно знать ее величину также в связи с большим влиянием молекулярно-поверхностных сил на процессы фильтрации нефти. Эти молекулярно-поверхностные явления могут существенно изменять характер

фильтрации. Обычные объемные свойства жидкостей (вязкость, плотность) обусловливаются молекулами, распространенными внутри жидкой фазы. Поэтому в крупнозернистой породе с относительно небольшой удельной поверхностью молекулы, находящиеся на поверхности, почти не влияют на процесс фильтрации, так как их число весьма мало по сравнению с числом молекул, находящихся внутри объема жидкости. Если же пористая среда имеет большую удельную поверхность, то число поверхностных молекул жидкости возрастает и становится сравнимым с числом объемных молекул. Поэтому поверхностные явления в малопроницаемой породе могут оказать более значительное влияние на процесс фильтрации жидкости, чем в крупнозернистой.

Таким образом, удельная поверхность представляет одну из важнейших характеристик горной породы. Следует отметить, что, несмотря на кажущуюся простоту понятия удельной поверхности, точное определение ее величины — сложная задача. Дело в том, что поры в пористой среде представлены каналами от десятков и сотен микрон (по диаметру) до величин, сравнимых с размерами молекул. Поэтому удельная поверхность глин или других адсорбентов,