ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 13.12.2021
Просмотров: 169
Скачиваний: 1
, т.е. .
Таким образом, процесс дросселирования газа 1-2 является изоэнтальпийным (h=const), как показано на следующем рисунке:
В процессе 1-2 происходят необратимые явления (трение, вихреобразование) и энтропия растет: .
Из объединенного выражения 1-го и 2-го законов термодинамики: , при dh=0 имеем: .
Поскольку и , то , т.е. давление при дросселировании газа может только уменьшаться, а его удельный объем – увеличиваться, т.е. .
Величина потерь давления в процессе дросселирования газа зависит от природы и состояния газа, а также от его скорости, относительного сужения канала и других параметров. Функция убывающая и ее производная при величина отрицательная, т.е. . Таким образом, можно сделать вывод, что при дросселировании газа: , а температура газа либо увеличивается, либо уменьшается, либо остается неизменной (для идеального газа и для точек инверсии в случае реального газа Т2=Т1).
14.8. Эффект Джоуля-Томсона
Эффект Джоуля-Томсона – это явление изменения температуры газа при адиабатном дросселировании, когда происходит расширение газа без совершения внешней работы и без теплообмена за счет преодоления гидравлического сопротивления . При этом затрачивается работа проталкивания :
Получим дифференциальное уравнение эффекта Джоуля-Томсона. Для этого запишем функцию состояния - энтальпию в виде: .
Ее дифференциал – полный дифференциал, равный:
. (1)
Удельная теплоемкость при p=const по определению равна:
. (2)
Производную , входящую в (1), получим из объединенного выражения 1-го и 2-го законов термодинамики:
. (3)
Разделим уравнение (3) на величину dp при Т=const. Тогда получим уравнение , в котором заменим , используя уравнения Максвелла (дифференциальные соотношения взаимности). Тогда получим:
. (4)
Подставим в уравнение (1) значения производных из выражений (2) и (4), учитывая, что dh=0:
, (5)
или при h=const:
. (6)
Уравнение (6) является дифференциальным уравнением эффекта Джоуля-Томсона, которое позволяет определить характер изменения температуры в процессе дросселирования. В уравнении (6) величина называется дифференциальным температурным коэффициентом дросселирования. Для определения величины требуется знать термическое уравнение состояния и теплоемкость ср для данного вещества.
Поскольку величина dp отрицательна , то знак величины dT в уравнении (6) противоположен знаку числителя этого уравнения. Для идеального газа термическое уравнение состояния: pv=RT. Тогда производная и числитель уравнения (6) равен , т.е. коэффициент . Для реальных газов и паров возможны три случая в зависимости от начального состояния газа перед дросселированием:
1. . Тогда ;
2. . Тогда - уравнение инверсии;
3. . Тогда .
Точка, в которой dT=0, есть точка инверсии (перестановки). Температура Т2=Т1=Тинв – температура инверсии. В критической точке для всех веществ и , т.е. реализуется 1-ый случай. Проиллюстрируем эти случаи дросселирования с помощью паровой диаграммы T-v для изобары (p=const):
где х – степень сухости пара; tg.
1-ый случай: Если начальное состояние вещества перед дросселированием определяется точкой А, то отрезок на графике MN=является первым слагаемым числителя выражения (6), а отрезок МО=MN-ON= является числителем выражения (6), так как MN>ON.
Таким образом, для этого случая и , т.е. газ при дросселировании охлаждается.
2-ой случай: Если начальное состояние перед дросселированием определяется точкой В, то отрезок M1N1<ON1 и М1О=M1N1-ON1 .
Тогда, согласно уравнению (6), и газ при дросселировании нагревается.
3-ий случай: Если начальное состояние вещества перед дросселированием определяется точками С1 и С2,то отрезок М20=0 и согласно уравнению (6), , т.е. температура газа не изменяется при дросселировании (точка М2 совпадает с началом координат). Точки С1 и С2 – точки инверсии. Для любой изобары реального газа имеются две точки инверсии С1 и С2, где С1 – в области жидкости и С2 – в области перегретого пара.
Реальный газ или пар можно путем дросселирования перевести в жидкое состояние в том случае, если его начальная температура перед дросселированием будет меньше температуры инверсии Тинв2. Положительный эффект Джоуля-Томсона используется в холодильной технике для получения холода.