Файл: Освоение космоса, космические исследования относятся к одному из основных направлений научнотехнической революции.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.11.2023
Просмотров: 34
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Основным методом космической геодезии является одновременное наблюдение спутника с наземных пунктов. При этом измеряются самые разнообразные параметры относительно положения пунктов и спутников. Параметрами могут служить дальность, скорость изменения дальности (или радиальная скорость), угловая ориентация линии визирования пункт—спутник в какой-либо системе координат, скорость изменения углов и т. д. Измерительные средства располагаются на наземных пунктах. На спутнике же размещается аппаратура, обеспечивающая работу этих измерительных средств. Спутник — это вспомогательный маяк для проведения измерений относительно положения опорных пунктов, причем этот маяк может быть как пассивным, так и активным. В первом случае спутник, освещенный солнцем или имеющий специальную лампу-вспышку, фотографируется с наземных пунктов на фоне звездного неба.
Одновременность наблюдений спутника с нескольких пунктов обеспечивается специальным синхронизирующим устройством, которое по сигналам единого времени производит одновременное открывание и закрывание затворов фотокамер. Наличие на фотографии изображений звезд (в виде точек) и следа спутника в виде пунктирной линии позволяет путем графических измерений определить взаимное положение штрихов пунктирной линии, соответствующих положениям спутника, и ближайших к ним точек, соответствующих звездам. Это дает возможность, зная положение звезд по звездному каталогу, определить координаты штрихов спутника или, точнее, угловую ориентацию линий визирования наблюдательный пункт—спутник. Совокупность угловых координат линии визирования пункт—спутник позволяет определить взаимную угловую ориентацию геодезических пунктов. Ориентация всей сети на поверхности Земли требует знания координат хотя бы одного пункта, определяемых классическими методами, и дальности до другого или координат двух пунктов, называемых базисными. - Для преодоления неблагоприятных метеорологических условий при оптических наблюдениях спутника используются радиотехнические средства. В этом случае спутник является как бы активным маяком. Применяются различные принципы измерений: эффект Доплера, смещение фаз радиосигналов спутника, принимаемых в различных точках пункта, время распространения сигнала пункт—спутник—пункт и т. д.
Большие перспективы в измерительной технике космической геодезии имеют оптические квантовые генераторы (лазеры). Они позволяют измерять дальность и радиальную скорость со значительно более высокой точностью, чем с помощью радиотехнических средств. Таким образом, космическая геодезия позволит уточнить форму Земли — геоид, точно определить координаты любых пунктов на поверхности нашей планеты, создать топографические карты на любые районы земной поверхности и определить параметры поля тяготения Земли.
Все это даст возможность морскому флоту определять очертания материков и получать точные координаты островов, рифов, маяков и других морских объектов, авиации — определять координаты аэропортов, наземных ориентиров и станций наведения. Эти данные позволят выбирать наилучшие маршруты движения и обеспечат надежность и безопасность работы морского и воздушного транспорта.
Как известно, для прокладки курса корабля или самолета в каждый момент времени необходимо точно знать их местоположение. Для этих целей служат различные навигационные системы, которые обеспечивают вождение по заданным маршрутам. С давних времен в навигации использовались естественные ориентиры или поля: небесные светила, магнитное поле Земли и др. В последнее время большое распространение получили радионавигационные системы, среди которых наиболее современными являются системы, использующие искусственные спутники Земли.
Спутники обеспечивают навигационной системе глобальность. Всепогодность навигации в этом случае достигается благодаря использованию радиосредств сверхвысокочастотного диапазона.
Навигация с использованием спутников основана на измерении параметров относительного положения и движения навигируемого объекта и спутника. Такими параметрами могут служить: расстояние (дальность), скорость изменения этого расстояния (радиальная скорость), угловая ориентация линии объект-спутник (линии визирования) в какой-либо системе координат, скорость изменения этих углов и др.
Координаты спутника в моменты навигационных определений могут сообщаться кораблям (или самолетам) при каждой навигации. Кроме того, на спутнике может устанавливаться запоминающее устройство, в которое закладываются данные о его прогнозируемом движении. Эта информация «сбрасывается» со спутника в процессе полета (периодически или по запросу с навигируемого объекта). Для упрощения процесса определения координат объекта может быть составлен каталог эфемерид (параметров орбит) навигационных спутников на несколько месяцев или лет вперед.
Большое влияние на прогнозирование движения спутника оказывают ошибки определения элементов орбиты, которые зависят прежде всего от точности работы наземных измерительных средств. Эти средства должны быть хорошо «привязаны» к геодезической системе координат. Если этого не будет, то может произойти «сдвиг» координатной системы навигационного спутника относительно геодезической. А это приведет к сдвигу в определении положения навигируемого объекта относительно геодезической системы, а следовательно, и к сдвигу относительно земных ориентиров, что может вызвать катастрофические последствия. Геодезические спутники позволяют с высокой точностью осуществить привязку координат измерительных пунктов к геодезической системе.
Для успешной работы навигационных спутников имеет значение правильный выбор параметров их орбит. Необходимо обеспечить достаточную частоту видимости спутника с навигируемых объектов. С этой точки зрения различные орбиты сильно отличаются друг от друга. Так, спутник, летящий по низкой полярной орбите «осматривает» всю Землю дважды в сутки, один раз на прямых, другой—на обратных витках. Точнее говоря, Земля относительно движущегося по орбите спутника перемещается так, что с любой ее точки он может быть виден 2 раза в сутки. Чтобы обеспечить непрерывный обзор поверхности Земли со спутников, запускаемых на полярные орбиты, т. е. для обеспечения видимости одного или более спутников с корабля или самолета, находящегося в любой точке нашей планеты, необходимо на орбитах высотой 200 км иметь 160 спутников, а высотой 1 тыс. км — 36 спутников.
Создание систем космической навигации позволяет значительно улучшить безопасность движения транспорта. Подобные системы прочно входят в практику корабле и самолетовождения, так как позволяют с высокой точностью определять местоположение кораблей и самолетов в любое время суток, при любом состоянии погоды.
ВЛИЯНИЕ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ НА РАЗВИТИЕ НАУКИ И ПРОИЗВОДСТВА
Создание сложнейших ракетно-космических систем, возникновение космической индустрии и решение фундаментальных проблем науки и техники, связанных с полетами в космос, дали массу идей, технических средств и принципиально новых конструктивно-технологических решений, внедрение которых в традиционное производство и использование в различных сферах деятельности человека даст колоссальные экономические выгоды. Опосредованные выгоды, которые приносит человечеству космонавтика, весьма трудно поддаются количественным оценкам. Тем не менее попытки таких расчетов делаются. Так, например, согласно подсчетам ряда зарубежных специалистов, прибыль, обусловленная научными исследованиями и разработками в области космоса, достигает 207 млрд. долл.
Благодаря развитию космонавтики физическая наука обогатилась фундаментальными открытиями в области астрофизики, космического излучения, изучения радиационных поясов Земли, солнечно-земной физики, рентгеновской астрономии и др. Потребности космической техники стимулировали исследования в области физики электронных и ионных пучков и направленных плазменных потоков. Применение низкотемпературных (криогенных) ракетных топлив, создание бортовых электрогенераторов сверхбольшой мощности, технически совершенных, привело к необходимости глубокого изучения физики низкотемпературных жидкостей, поведения их в условиях невесомости, разработки новых методов криостатирования легких надежных магнитных систем с малым энергопотреблением, стимулировало развитие физики сверхпроводимости и гелиевой криогеники.
Развитие космической энергетики позволило значительно усовершенствовать существующие источники тока. Так, например, топливные элементы, вырабатывающие электрический ток в результате электрохимических процессов, применяемые в космических кораблях, в будущем могут найти широчайшее использование в автомобилях, что позволит ликвидировать один из основных источников загрязнения атмосферы, каким является двигатель внутреннего сгорания. Топливные элементы, по-видимому, будут широко внедрены в промышленность и сельское хозяйство как удобный и эффективный источник электроэнергии. То же можно сказать о радиоизотопных и ядерных источниках тока. Наряду с этим усовершенствованные химические аккумуляторы (никель-кадмиевые, серебряно-кадмиевые, серебряно-цинковые) и солнечные батареи, широко использующиеся в космических системах, найдут применение в самых различных областях народного хозяйства.
Большое значение в современной технике имеет надежность механизмов и машин. Разработка сложных космических комплексов, эксплуатация которых проходит в исключительно трудных и малоизведанных условиях, стимулировала дальнейшее развитие теории надежности, теории проектирования (внедрение системных методов), методов испытаний и экспериментальной отработки и пр. В связи с тем что на космическую технику работают практически все отрасли народного хозяйства, проблемы повышения надежности охватывают и электронику, и измерительную технику, и машиностроение. Таким образом, космонавтика стимулирует повышение надежности в самых различных областях производства.
Велико значение ракетно-космической техники в развитии микроэлектроники и вычислительных машин. Острая потребность в малых размерах и незначительном энергопотреблении привела к разработке сверхминиатюрных, компактных и высоконадежных радиоэлектронных приборов и устройств, инициировала развитие транзисторной техники и интегральных схем, которые в последние годы широко употребляются в производстве радиоприемников, телевизоров, электронных часов и т. д. Внедрение совершенных электронных вычислительных машин в различные отрасли народного хозяйства привело к резкому увеличению производительности труда и удешевлению продукции, позволило высвободить большое количество времени для творческой деятельности человека.
Ракетно-космическая техника связана с разработкой и развертыванием промышленного производства самых разнообразных конструкционных материалов, которые находят в настоящее время применение в различных областях производства и строительства. Хорошо известно, как широко используется «крылатый» металл алюминий. Все больше начинает внедряться титан и его сплавы. Но, пожалуй, наибольшее значение имеет создание всевозможных неметаллических конструкционных материалов: армированных, комбинированных, слоистых, стойких и к высоким и к крайне низким температурам. Так, например, новый составной материал, состоящий из нитевидных кристаллов бора, склеенных специальной резиной, вдвое прочнее и в два с половиной раза тверже алюминия. При этом он на 25% легче его. Одна из фирм Швейцарии применила разработанную для космических целей технологию в производстве нового «слоеного» материала (алюминий и пластиковая пена) для изготовления стенных панелей, а также чрезвычайно прочных и легких лыж. Для крупных твердотопливных ракетных двигателей в США был создан так называемый армированный пластик (из стекловолокна). Сейчас он широко используется для производства водопроводных и канализационных труб и в ирригации. Он легок, не подвержен коррозии, устойчив на сжатие, практически не бьется и пригоден для получения тонкостенных труб (особенно большого диаметра). Производство этого материала отличается простотой и не требует больших экономических затрат. Широкое распространение уже получил алюминированный пластик. Он нетеплопроводен, гибок, устойчив против ветра и воды. Хотя его толщина всего 0,012 мм, он поразительно прочен. Широкое применение в народном хозяйстве нашли также полиэтиленовые пленки, специальные искусственные кожи и многие другие материалы. Таким образом, потребности ракетно-космической техники вызвали целую революцию в области конструкционных материалов. Теперь материалы практически с любыми свойствами могут быть получены чуть ли не из любого пригодного сырья, что позволяет меньше зависеть от природных ресурсов. Это имеет огромное экономическое значение.
Большой вклад внесла космонавтика в решение проблем организации работ и управления разработками, а также в науку о прогнозировании развития науки и техники. Реализация крупнейших проектов, связанных с созданием ракет-носителей, межпланетных станций, пилотируемых кораблей и орбитальных баз, позволила разработать методы и средства, дающие возможность вплотную подойти к таким, например, глобальным проектам, как освоение Мирового океана; послужила хорошей школой для перевода управления различными отраслями промышленности и народного хозяйства в целом на программные методы с широчайшим использованием электронной вычислительной техники.