Файл: Реферат терморезисторы, варисторы (принцип действия, основные характеристики, типовые схемы включения) Иркутск 2008.doc
Добавлен: 22.11.2023
Просмотров: 199
Скачиваний: 11
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Рис.12. Защита схемы с помощью варистора
При возникновении импульса напряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление до долей Ома и шунтирует нагрузку, защищая ее, и рассеивая поглощенную энергию в виде тепла. В этом случае через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после гашения импульса напряжения он вновь приобретает очень большое сопротивление.
Рис.13. Напряжение на нагрузке при коммутации в сети 0,4 кВ
Таким образом, включение варистора параллельно электрооборудованию не влияет на его работу в нормальных условиях, но "срезает" импульсы опасного напряжения, что полностью обеспечивает сохранность даже ослабленной изоляции. Варистор в состоянии покоя имеет высокое сопротивление (несколько МОм) по отношению к защищаемому прибору и не изменяет характеристику электрической цепи. При превышении напряжения варистор имеет низкое сопротивление (всего несколько Ом) и фактически шунтирует прибор, т.е. устройство Е защищено.
2.2. Основные характеристики и параметры
Классификационное напряжение, В — напряжение при определённом токе (обычно изготовители указывают при 1 мА), практической ценности не представляет.
Рабочее напряжение, В (для пост. тока и для переменного) — диапазон — от нескольких В до нескольких десятков кВ; данное напряжение должно быть превышено только при перенапряжениях.
Рабочий ток, А — диапазон — от 0,1 мА до 1 А
Максимальный импульсный ток, А
Поглощаемая энергия, Дж
Максимальное напряжение ограничения - это максимальное напряжение между выводами варистора в течение длительности импульса тока (8/20 μсек – предполагается, что это грозовой импульс)
Допускаемая мощность рассеивания - характеризует возможность рассеивать поглощаемую электрическую энергию в виде тепла. Этот показатель в основном определяется геометрическими размерами варистора и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, которые играют роль своеобразного радиатора.
Ток перегрузки - максимальный пиковый ток варистора при изменении напряжения варистора на 10% при стандартном импульсе тока (8/20 μсек) приложенный один или два раза с интервалом 5 мин.
Средняя рассеиваемая мощность -средняя мощность рассеяния при заданной температуре окружающей среды.
Емкость - опорная величина, измеряемая при заданной частоте. Варисторы имеют достаточно большую емкость, определенным образом зависящую от приложенного напряжения.
Рис.14. Типичные вольт-фарадные характеристики варистора
Как видно из приведенного рисунка, варистор имеет определенную емкость в рабочем режиме (когда нет импульсов напряжения), а при воздействии импульса напряжения емкость варистора практически равна нулю
Информацию о напряжении на варисторе в области больших токов изготовители приводят в технических условиях. Иногда это напряжение называют остающимся напряжением. При этом обязательно указывают длительность (форму) и амплитуду импульса тока, при воздействии которого на варистор эти измерения произведены. Остающееся напряжение при различных амплитудах тока импульса можно измерить на специальных импульсных установках.
Оценка срока службы варистора - определяется как максимально допустимое количество импульсов, прикладываемых к варистору. Для определения используются импульсы стандартной длительности - 8/20 микросекунд (или 10/1000).
Коэффициент нелинейности варистора – это отношение статического R и дифференциального r сопротивлений при заданном постоянном напряжении на варисторе:
. (2.4)
При учете соотношений (2.3), найдем дифференциальное сопротивление варистора:
. (2.5)
Тогда с учетом соотношений (2.4) и (2.5) коэффициент нелинейности варистора
(2.6)
Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO. Экспериментально коэффициент нелинейности можно оценить по формуле
Чаще всего коэффициент нелинейности определяется при токе 1 мА и 10 мА, при этом формула (3) приобретает вид
Вольт – амперная характеристика
, как было отмечено, должна соответствовать уравнениям (2.3). Важно отметить, что вольт – амперная характеристика варистора – симметрична. Если же схема работает в узком диапазоне изменений напряжений и токов, то коэффициент нелинейности в этом диапазоне можно считать постоянным. Тогда
и ВАХ варистора будет иметь вид:
. (2.7)
Иногда ВАХ варисторов аппроксимируют уравнением:
, (2.8)
где и .
Используя уравнения (2.7) и (2.8), можно определить зависимость сопротивления от тока и напряжения:
, (2.9)
(2.10)
Температурные коэффициенты статического сопротивления, напряжения и тока (TKR, или ; TKU, или ,TKI, или ). В связи с нелинейностью ВАХ следует различать температурные коэффициенты статического сопротивления варистора, измеренные при постоянных напряжении или токе, а также температурные коэффициенты напряжения и тока. Из уравнений (2.7) – (2.10), с учетом температурного изменения коэффициентов A и , получим:
,(2.11)
, (2.12)
, (2.13)
, (2.14)
При малых напряжениях на варисторах, когда коэффициент нелинейности
, т.е. на линейном участке ВАХ
, (2.15)
Используя уравнения (2.11) – (2.14), определим соотношения между различными температурными коэффициентами варистора:
, .
У отечественных варисторов, в диапазоне температур от -40 до
, .
Частотные свойства варисторов могут определяться либо инерционностью процессов, приводящих к нелинейности ВАХ, либо собственной емкостью варистора. Инерционность разогрева и охлаждения активных областей под точечными контактами между кристаллами очень мала. Поэтому частотные свойства варисторов определяются временем перезаряда их собственной емкости.
В некоторых случаях указывают коэффициент защиты варистора - это отношение напряжения на варисторе при токе 100А к напряжению при токе 1мА (т.е. к классификационному напряжению). Этот коэффициент для варисторов на основе оксида цинка находится в пределах 1.4 - 1.6, и он характеризует способность варистора ограничивать импульсы перенапряжения. Другими словами - при росте напряжения в 1,4- 1,6 раза ток возрастает в 100 000 раз (!).
2.3. Применение и основные схемы включения
Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,1 мА до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.
Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии передачи, линии связи, электрические приборы) и др.
Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.
Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение - изменение параметров со временем и при колебаниях температуры. В последние 5 лет появились на рынке так называемые "нестарящиеся" варисторы, имеющие по ряду параметров улучшение электрических свойств во времени под напряжением промышленной частоты. Важно отметить, что варисторы, как элементы защиты устанавливают параллельно защищаемому прибору (схеме).
3. Лабораторное задание
-
Снять зависимость R=f(T) для терморезистора при различных температурах. -
Снять статическую вольт – амперную характеристику терморезистора. -
Вычислить коэффициент температурной чувствительности B и температурный коэффициент сопротивления согласно формулам (1.2) и (1.3). -
Снять вольтамперной характеристики варистора на постоянном токе. Подать питание на измерительную схему рис. 15. Изменяя входное напряжение от 0 до 60 В, замерить и записать значения тока через варистор (6…8 точек). -
Исследовать мостовой стабилизатор напряжения на варисторах на постоянном токе. -
Исследовать мостовой стабилизатор напряжения на варисторах на переменном токе. -
Зарисовать осциллограммы напряжений на выходе мостового стабилизатора.
4. Эксперимент
Описание экспериментальной установки для выполнения заданий 1-3.
Эксперимент проводится на установке аналогичной изображенной на рис.15. Терморезистор помещается в термостат, температура внутри которого измеряется термометром или термопарой. Сопротивление резистора измеряется омметром.
Рис.15. Экспериментальная установка
Снятие вольтамперных характеристик выполняется по схеме, приведенной на рис. 15. Измерительная цепь питается от источника постоянного регулируемого напряжения ИП с вольтметром V. Ток через терморезистор измеряется миллиамперметром.
Описание экспериментальной установки для выполнения заданий 4-6.
4. Вольтамперные характеристики варистора снимаются по схеме рис. 15. Снять вольтамперной характеристики варистора на постоянном токе. Подать питание на измерительную схему рис. 15. Изменяя входное напряжение от 0 до 60 В, замерить и записать значения тока через варистор.
Варисторы широко применяются в технике для защиты от перенапряжений (искрогасители), в стабилизаторах и ограничителях напряжения, в преобразователях сигнала (умножители частоты). В данной работе исследуется мостовой стабилизатор напряжения на варисторах (рис. 16).
Рис.16. Мостовой стабилизатор
Напряжение на выходе стабилизатора равно разности напряжений на варисторе (U) и на линейном резисторе (UR): Uвых = U - UR. С ростом входного напряжения Uвх растет ток в элементах моста. Выходное напряжение, как видно из рис.17а, вначале увеличивается, затем падает до нуля и после изменения знака снова растет по абсолютной величине.