Файл: Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 22.11.2023

Просмотров: 62

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Слово «Алгоритм» происходит от algorithmi — латинского написания имени аль-Хорезми, под которым в средневековой Европе знали величайшего математика из Хорезма (город в современном Узбекистане) Мухаммеда бен Мусу, жившего в 783-850 гг. В своей книге «Об индийском счете» он сформулировал правила записи натуральных чисел с помощью арабских цифр и правила действий над ними столбиком. В дальнейшем алгоритмом стали называть точное предписание, определяющее последовательность действий, обеспечивающую получение требуемого результата из исходных данных. Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством. Создание алгоритма, пусть даже самого простого, — процесс творческий. Он доступен исключительно живым существам, а долгое время считалось, что только человеку. Другое дело — реализация уже имеющегося алгоритма. Ее можно поручить субъекту или объекту, который не обязан вникать в существо дела, а возможно, и не способен его понять. Такой субъект или объект принято называть формальным исполнителем. Примером формального исполнителя может служить стиральная машина-автомат, которая неукоснительно исполняет предписанные ей действия, даже если вы забыли положить в нее порошок. Человек тоже может выступать в роли формального исполнителя, но в первую очередь формальными исполнителями являются различные автоматические устройства, и компьютер в том числе. Каждый алгоритм создается в расчете на вполне конкретного исполнителя. Те действия, которые может совершать исполнитель, называются его допустимыми действиями. Совокупность допустимых действий образует систему команд исполнителя. Алгоритм должен содержать только те действия, которые допустимы для данного исполнителя.

Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя. Для алгоритмов, встречающихся в математике, средой того или иного исполнителя могут быть числа разной природы — натуральные, действительные и т.п., буквы, буквенные выражения, уравнения, тождества и т.п.

Данное выше определение алгоритма нельзя считать строгим — не вполне ясно, что такое «точное предписание» или «последовательность действий, обеспечивающая получение требуемого результата». Поэтому обычно формулируют несколько общих свойств алгоритмов, позволяющих отличать алгоритмы от других инструкций.


Такими свойствами являются:

  • Дискретность (прерывность, раздельность) — алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

  • Определенность — каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

  • Результативность (конечность) — алгоритм должен приводить к решению задачи за конечное число шагов.

  • Массовость — алгоритм решения задачи разрабатывается в общем виде, то есть, он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

Разъясняя понятие алгоритма, часто приводят примеры “бытовых алгоритмов”: вскипятить воду, открыть дверь ключом, перейти улицу и т. д…: рецепты приготовления какого-либо лекарства или кулинарные рецепты являются алгоритмами. Но для того, чтобы приготовить лекарство по рецепту, необходимо знать фармакологию, а для приготовления блюда по кулинарному рецепту нужно уметь варить. Между тем исполнение алгоритма – это бездумное, автоматическое выполнение предписаний, которое в принципе не требует никаких знаний. Если бы кулинарные рецепты представляли собой алгоритмы, то у нас просто не было бы такой специальности – повар.

Правила выполнения арифметических операций или геометрических построений представляют собой алгоритмы. При этом остается без ответа вопрос, чем же отличается понятие алгоритма от таких понятий, как “метод”, “способ”, “правило”. Можно даже встретить утверждение, что слова “алгоритм”, “способ”, “правило” выражают одно и то же (т.е. являются синонимами), хотя такое утверждение, очевидно, противоречит “свойствам алгоритма”.

Само выражение “свойства алгоритма” некорректно. Свойствами обладают объективно существующие реальности. Можно говорить, например, о свойствах какого-либо вещества. Алгоритм – искусственная конструкция, которую мы сооружаем для достижения своих целей. Чтобы алгоритм выполнил свое предназначение, его необходимо строить по определенным правилам. Поэтому нужно говорить не о свойствах алгоритма, а о правилах построения алгоритма, или о требованиях, предъявляемых к алгоритму.



Первое правило – при построении алгоритма прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результате своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные.

Это правило позволяет сразу отделить алгоритмы от “методов” и “способов”. Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм.

Второе правило – для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти.

В школьной “теории алгоритмов” эти два правила не рассматриваются. В то же время практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил. В языках программирования распределение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.

Третье правило – дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно.

Четвертое правило – детерменированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки.

Пятое правило – сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

Итак, алгоритм – неопределяемое понятие теории алгоритмов. Алгоритм каждому определенному набору входных данных ставит в соответствие некоторый набор выходных данных, т. е. вычисляет (реализует) функцию. При рассмотрении конкретных вопросов в теории алгоритмов всегда имеется в виду какая-то конкретная модель алгоритма.


Алгоритм применительно к вычислительной машине 

Механические алгоритмы

Гибкие алгоритмы

Вероятностный (стохастический) алгоритм 

Эвристический алгоритм 

Линейный алгоритм 

Разветвляющийся алгоритм 

Циклический алгоритм 

Цикл

Вспомогательный (подчиненный) алгоритм (процедура

Структурная (блок-, граф-) схема алгоритма 

На самом деле алгоритмы для людей никто не составляет (не будем забывать, что не всякий набор дискретных операций является алгоритмом). Человек в принципе не может действовать по алгоритму. Выполнение алгоритма – это автоматическое, бездумное выполнение операций. Человек всегда действует осмысленно. Для того, чтобы человек мог выполнять какой-то набор операций, ему нужно объяснить, как это делается. Любую работу человек сможет выполнять только тогда, когда он понимает, как она выполняется.

Вот в этом – “ объяснение и понимание” – и кроется различие между понятиями “алгоритм” и “способ”, “метод”, “правило”. Правила выполнения арифметических операций – это именно правила (или способы), а не алгоритмы. Конечно, эти правила можно изложить в виде алгоритмов, но толку от этого не будет. Для того, чтобы человек смог считать по правилам арифметики, его нужно научить. А если есть процесс обучения, значит, мы имеем дело не с алгоритмом, а с методом.

При составлении алгоритма программист никому ничего не объясняет, а исполнитель не пытается ничего понять. Алгоритм размещается в памяти компьютера, который извлекает команды по одной и исполняет их. Человек действует по-другому. Чтобы решить задачу, человеку требуется держать в памяти метод решения задачи в целом, а воплощает этот метод каждый по-своему.


Список литературы
1. Нестеренко А. В. ЭВМ и профессия программиста.

М., Просвещение, 1990.

2. Брудно А. Л., Каплан Л. И. Московские олимпиады по программированию.

М., Наука, 1990.

3. Кузнецов О. П., Адельсон-Вельский Г. М. Дискретная математика для инженера.

М., Энергоатомиздат, 1988.

4. Гейн А.Г. и др… Основы информатики и вычислительной техники.

М., Просвещение, 1994.

5. Информатика. Еженедельное приложение к газете “Первое сентября”. 1998, № 1.

6. Радченко Н. П. Ответы на вопросы выпускных экзаменов. – Инфоматика и

образование, 1997, №4.


7. Касаткин В.Н. Информация, алгоритмы, ЭВМ. М., Просвещение, 1991.


8. Каныгин Ю. М., Зотов Б. И. Что такое информатика ?

М., Детская литература, 1989.

9. Гейн А. Г., Шолохович В.Ф. Преподавание курса “Основы информатики и вычислительной техники” в средней школе. Руководство для учителя.

Екатеринбург, 1992.

12. Л.З. Шауцуков Основы информатики в вопросах и ответах.