Файл: Теоретическая часть 1 Физикохимические основы электролиза.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 23.11.2023

Просмотров: 59

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Пассивацию цветных металлов в кислых водных средах связывают со специфической адсорбцией кислорода воды на поверхности этих металлов, которая происходит в несколько стадий: сначала образуется поверхностный
15) Ме + nH2O = МеО + 2nН+,
а затем протекает электрохимическая стадия
16) МеO - mе = МеО
В зависимости от типа пассивации анода выбирают условия для возвращения его в активное состояние.

Солевую пассивность устраняют перемешиванием электролита и повышением температуры; пассивность, обусловленную образованием кислородсодержащих пленок, устраняют введением депассиваторов (например, хлорид-ионов), препятствующих образованию кислородного "барьера".
1.3 Перепассивация металлов

Если при увеличении анодного потенциала пассивирующий оксид может быть далее окислен с образованием растворимого соединения, то металл вновь начинает растворяться, но с образованием ионов высшей валентности - наступает перепассивация металла.

Это явление характерно для анодного растворения хрома, никеля, железа и их сплавов, например:
17) СrО3 + 4Н2О - 6е = Сr2O + 8H+
Пассивное состояние металла нарушается и при наложении на него катодного тока или под действием восстановителя или ионов, вызывающих растворение оксидной пленки: галогенид-ионов, СlO , ОН , SO . Действие этих анионов связывают с образованием соединений с металлом, в которых они вытесняют кислород или гидроксид из пассивирующего фазового оксидного или адсорбционного слоя, образуют на поверхности с металлом адсорбированный комплекс, который легко теряет связь с основной массой металла и переходит в раствор.


Пассивное состояние металла устраняется также вследствие механического нарушения защитной пленки, приводящего к образованию микрогальванического короткозамкнутого элемента из обнаженного активного участка металла (анод) и оксида этого металла (катод). В процессе работы этого элемента происходит анодное растворение металла и катодное восстановление оксидной пленки с образованием гидратированных ионов металла промежуточной степени окисления.
1.4 Зарождение и рост кристаллов на катоде

Образование и рост электролитических осадков определяются скоростями одновременно протекающих процессов: появления новых центров кристаллизации и роста ранее образовавшихся кристаллических зародышей. Если скорость первого процесса больше, чем второго (вследствие замедленной электрохимической стадии или транспортировки вещества к электроду), получаются мелкокристаллические осадки; при обратном соотношении скоростей осадки становятся крупнокристаллическими. Лимитирующей стадией электроосаждения цветных металлов является образование двух- и трехмерных кристаллов, подчиняющееся закономерностям фазового перенапряжения. Поскольку рост кристалла происходит на наиболее активных участках кристаллической решетки, увеличение поляризации катодного процесса приводит к возникновению новых центров кристаллизации и образованию осадка с мелкокристаллической структурой, поэтому на структуру осадка можно влиять изменением величины поляризации. Структура осадка также становится мелкокристаллической, если, не изменяя плотности тока, уменьшать концентрацию осаждаемого металла в электролите, так как концентрация разряжающихся частиц определяет величину предельного диффузионного тока.

Структура катодных осадков характеризуется внешней формой, внутренним строением и кристаллографической ориентацией и определяет его важнейшие металлофизические свойства. По внешней форме осадки делят на монокристаллы, дендриты, порошковые и сплошные. Внутреннее строение включает в себя взаимное расположение, форму, размеры и сцепление зерен осадка в кристаллическом агрегате, тип и концентрацию в кристаллах различных дефектов и включений. Кристаллографическая ориентация характеризует преимущественное направление оси в зернах осадка относительно подложки.

На структуру катодного осадка также влияет состояние поверхности подложки и ее структура, которую некоторые металлы (Сu, Аg, Zn) способны воспроизводить, если различия в значениях постоянной решеток осаждаемого металла и подложки не превышают 15%. При этом непосредственно у поверхности подложки

образуется большое количество мелких кристаллов; часть из них в процессе электролиза растет и в направлении, параллельном поверхности подложки, приобретая форму геометрически правильных твердых тел, формирующих окончательную структуру осадка.

Различие в скоростях роста граней кристалла, в том числе вызванное адсорбцией на них вводимых ПАВ, вызывает преимущественную ориентацию кристаллов на растущем катоде, что формирует текстуру осадка.

Существенно влияют на структуру и рост кристаллов неорганические примеси-катионы, способные соосаждаться на катоде совместно с извлекаемым металлом. Например, примеси меди и цинка (0.01-0.1 г/дм3) ухудшают качество никелевого осадка, а примесь кадмия положительно влияет на него, сглаживая поверхность. Влияние примесей на электрокристаллизацию сводится:

1) к затруднению подхода ионов металла к поверхности, наблюдаемому в присутствии коллоидов и суспензий, вследствие образования пленок на электродах. Это существенно уменьшает предельный диффузионный ток;

2) к торможению разряда вследствие комплексообразования между ионами металла и молекулами примеси;

3) к вхождению адсорбированных атомов металла в кристаллическую решетку осадка, затрудняющему поверхностную диффузию анионов, что влияет на кинетику образования зародышей металла.

Органические вещества оказывают наибольшее воздействие на электрокристаллизацию, сопровождающееся некоторым улучшением качества поверхности осадка и увеличением поляризации; при этом перенапряжение тем больше, чем крупнее молекулы добавки и чем больше в ней ненасыщенных электронных связей. С увеличением плотности тока и увеличением отрицательного заряда катода органические примеси катионного типа оказывают более заметное влияние, чем примеси анионного типа, что проявляется в увеличении шероховатости осадка. Это связывают с торможением преимущественно зародышеобразования в присутствии добавок, чем роста зародышей, что приводит к увеличению размеров кристаллов. При этом органическое вещество включается в состав осадка, и его концентрация в растворе уменьшается по мере электролиза.

Как правило, с уменьшением тока обмена осаждаемого металла действие органической примеси становится более заметным.


Нарушение поверхности катодного осадка (шишки, дендриты) связывают с присутствием в электролите взвешенных частиц анодного шлама, коллоидов, с образованием оксидных и жировых пленок. Все это приводит к экранированию части катода и нарушению нормального роста кристаллов.

При благоприятных условиях роста размеры кристаллов увеличиваются по мере электрокристаллизации, но если электролиз прервать и возобновить спустя некоторое время, на катоде вновь зарождается много мелких кристаллов. При выключении тока примеси блокируют активные центры роста осадка, и новое включение тока сопровождается увеличением перенапряжения, что вызывает образование новых зародышей на запассивированной поверхности.

На структуру и величину кристаллов влияет природа соли электролита, поскольку она определяет в значительной степени величину поляризации. Если в момент зарождения новой фазы поляризация достаточно велика, металл может выделиться и в аморфном состоянии, поскольку энергия образования зародышей аморфной фазы выше, чем кристаллической.



2 Электролиз водных растворов
2.1 Электролиз с растворимым анодом

Анодная медь содержит значительные количества примесей, %: 0.1 … 0.3 Ni; 0.005 … 0.1 S; 0.006 … 0.2 Sb; 0.007 … 0.2 Аs; 0.0015 … 0.01 Вi; 0.013 …0.1 Рb; до 0.15 Sе + Те. до 0.1 Аu + Аg.

В процессе анодного растворения меди образуются ионы Сu2+ и Сu+:
18) Сu - 2е = Сu2+, Е = + 0.34 В,

19) Сu - е = Сu+, Е = + 0.51 В,

20) Сu+ - е = Сu2+, Е = + 0.17 В,


между которыми устанавливается равновесие в соответствии с реакцией
21) СuSO4 + Сu ↔ Сu2SO4
Однозарядные ионы меди нестойки, они тотчас диспропорционируют, выделяя мелкодисперсную медь:
22) Сu+ = Сu2+ + Сu
Константа равновесия этой реакции равна
23) К = аCu2+/(аCu+) = 1.5·10
т.е. концентрация иона Сu+ почти в 106 раз меньше, чем иона Сu2+ и соответствует уравнению:

24) + = E + 0,0002 · T · lga
Пропускание тока через медный анод сопровождается в первую очередь реакцией с наиболее электроотрицательным потенциалом; дальнейшая поляризация анода, возникающая по мере увеличения плотности тока, смещает его потенциал в положительную сторону, что может вызвать образование ионов иной степени окисления. Потенциал медного анода может увеличиваться и в результате накапливания на нем шлама, затрудняющего диффузию. Электрическое сопротивление шлама в течение периода растворения анода может возрасти от 0,1 до 21,4% от общего сопротивления ванны.


При умеренных плотностях тока на медном аноде невозможно попутное окисление


25) 2Н2O - 4е = O2 + 4H+, Е° = 1,23 В
или тем более сульфат-ионов:
26) SO - 2е = S2O , Е° = 2,05 В,
но при высокой поляризации на аноде отмечено выделение кислорода. При электрорафинировании меди анодный выход по току всегда немного больше катодного; иногда он превышает 100%. Это связано с механическим разрушением (выкрашиванием) анода и переходом его в шлам в виде металлических частиц, с химическим растворением металлической меди анода (в контакте с воздухом) и содержащейся в аноде закиси меди в кислом

электролите по реакциям:
27) Сu + 0,5O2 + Н2SО4 = СuSO4 + H2O,

28) Сu2О + Н2SO4 = СuSO4 + Н2О + Сu↓,
(что вызывает обогащение электролита сульфатом меди и обеднение его серной кислотой), с диспропорционированием ионов Сu+, в результате чего до 0,2% анодной меди в основном переходит в шлам и частично остается в электролите во взвешенном состоянии.

Чрезмерное накапливание меди в электролите предотвращают, регулярно выводя его некоторое количество из циркуляционной системы электролизного цеха в купоросный цех. Обогащение электролита медью отчасти предупреждается закрытием зеркала электролита слоем масла, пластмассовой крошкой или пленкой (уменьшается проникновение кислорода воздуха в электролит и его испарение), поддержанием умеренной начальной концентрации в электролите меди и серной кислоты, интенсивной циркуляцией электролита (выравнивается концентрация меди в приэлектродных слоях).

Загрязнение катодного осадка, происходящее главным образом в результате захвата раствора и плавучего шлама, предупреждают:

1) регенерацией электролита промежуточным обезмеживанием в специальных (регенеративных) ваннах с нерастворимым анодом и частичным выводом электролита в производство медного купороса;

2) увеличением концентрации серной кислоты в электролите, позволяющим уменьшить растворимость в нем ионов Sb3+, Вi3+;

3) введением в состав электролита хлор-ионов, что уменьшает концентрацию

в нем ионов Аs3+;

4) повышением скорости циркуляции электролита, чем устраняется возможное обеднение медью прикатодного слоя.

Плавучая разновидность шлама представляет взвесь в электролите дисперсных коллоидных частиц, коагулированных иногда до размеров относительно крупных хлопьев. Попадая на растущий катодный осадок, шлам вызывает дефекты поверхности катода (шишки, дендриты), загрязняет его примесями (сурьма, мышьяк, серебро), придающими меди хрупкость. Причиной образования плавучего шлама обычно являются вторичные химические реакции, протекающие в электролите при изменении его состава и уменьшении температуры, например гидролиз мышьяковой и мышьяковистой кислот, с образованием гелеобразных основных солей. Аналогичные превращения происходят и с ионами Sb3+. Серебро входит в состав взвешенного шлама в виде мельчайших частиц металла или хлорида, поэтому образование взвешенного шлама предотвращают поддержанием постоянной высокой температуры электролита, введением в состав электролита ионов хлора, переводящих соли сурьмы, мышьяка, висмута и серебра в компактный осадок, применением добавок в электролит реагентов-коагуляторов.

Загрязнение товарной меди кислородом происходит при плавке и розливе, он понижает пластичность и электропроводность меди. Также нежелательна примесь серы, переходящей в металл из газов пламенных печей; после плавки в них медь содержит до 0,04% кислорода и 0,012% серы, а после индукционной плавки часто серы и кислорода меньше 0,01%. При переплавке катодной меди в шахтных печах в металле остается около 3·10 % кислорода и 1.5·10 % серы.

Катоды наращивают 6-8 суток, затем извлекают, промывают, сушат, переплавляют в пламенных, индукционных или шахтных печах и разливают медь в слитки особой формы, предназначенные для изготовления проволоки - вайербарсы или иные. Обычная чистота катодов 99,95% (марка МОк).

Шлам электрорафинирования меди представляет собой рыхлый мелкодисперсный (35-50 мкм) нерастворимый продукт ионизации анода, который под влиянием собственного веса периодически сползает с анода и накапливается на дне ванны. Выход шлама определяется химическим составом анода и обычно пропорционален концентрации примесей в нем. Накапливание шлама на поверхности анода сопровождается его поляризацией в связи с возникающими при этом диффузионными затруднениями доставки и отвода участников электрохимического процесса.

2.2 Электролиз с нерастворимым анодом
Для этого процесса пригодны растворы сульфата меди с концентрацией меди не менее 30 г/дм3, получаемые разными способами, обычно выщелачиванием окисленных руд и концентратов. Электролиз проводят в ваннах, где катодных основ из чистой меди около 80, анодов из сплава свинца с 8-15% сурьмы и 1% серебра на один больше. Раствор подают в каждую ванну со скоростью около 1 м3/мин. На выход по току отрицательно влияет примесь железа, которая восстанавливается на катоде и окисляется на аноде, бесполезно расходуя электроэнергию, поэтому перед электролизом железо, если его мало, осаждают известью, предварительно окисляя воздухом:
29) 4Fe2+ + О2 + 4Н+ = 4Fез+ + 2Н2O;

30) К = (аFe3+) / ([O2] · (aFe2+) · (aH+))= 5 · 1030
Получаемые гидратные осадки трудно промыть, и с ними теряется значительное количество меди, поэтому когда концентрация ионов Fез+ слишком высока, их перед электролизом восстанавливают цементационной медью

медь рафинирование электролитический катод

31) 2Fез+ + Сu = 2Fе2+ + Сu2+,
либо диоксидом серы
32) 2Fез+ + SO2 + 2Н2О = 2Fе2+ + SO + 4Н+
Ионы Fе2+ окисляются на аноде при потенциале, меньшем потенциала окисления воды, уменьшая напряжение на ванне, и это выгодно; однако возникающие ионы Fе3+ восстанавливаясь на катоде, снижают выход меди по току.

По мере истощения электролита на катоде вместе с медью осаждается СuО и выделяется водород:
33) Сu2+ + Н2О + 2е = СuО + H2, Е° = -0,22 В;
осадок становится черным, губчатым, он отрывается от катода, выпадает в шлам. Вследствие концентрационной поляризации снижается и чистота осадка, поэтому электролиз заканчивают после уменьшения концентрации меди до 15-20 г/дм3, а отработанный электролит, в котором регенерировалась серная кислота, направляют в оборот на выщелачивание.
2.3 Основные сведения по безосновной технологии
Основное достоинство безосновной технологии - получение более высококачественной меди. Особенностью технологии электрорафинирования меди безосновным способом стало наращивание катодов медных на титановых матрицах многоразового использования, с последующей механизированной промывкой, сдиркой, стопированием, взвешиванием и обвязкой пакетов на стрип-машине финской фирмы "WENMEС" (рис. 2).

В этом случае процесс электролитического рафинирования медных анодов включает следующие оперативные работы: подготовка катодных матриц; ремонт матриц; загрузка серий ванн анодами и титановыми матрицами; выгрузка катодов медных; обслуживание титановых матриц и катодов; выгрузка анодных остатков; чистка электролизных ванн; корректировка электролита; приготовление и введение в электролит ПАВ.

Подготовку катодных матриц к загрузке производят на стрип-машине. Основой для наращивания медных осадков служит матрица из титана (рис. 3).

В процессе эксплуатации матриц нарушается обрамление кромок, образуются оксиды на поверхности полотна. На конвейере стрип-машины электролизник визуально оценивает целостность обрамления, составляющие поверхности матриц. Готовые для дальнейшей эксплуатации матрицы продолжают движение на разгрузочный конвейер. Нижнюю кромку изолируют воском в ванне, монтированной в разгрузочный конвейер в стрип-машине методом двойного погружения, а боковые кромки изолируют расплавленным воском при помощи форсунок.





Дефектные матрицы выводят на выбраковочный конвейер, сортируют, укладывают в стопы для последующих операций: обработки поверхности матриц на станках; ремонт боковых обрамлений; выравнивание поверхности матриц.

Стопы дефектных матриц с помощью крана перевозят на участок ремонта. В качестве изоляционных боковых кромок применяют материал, обладающий диэлектрическими свойствами, химической стойкостью и механической прочностью в кислых средах в диапазоне рабочих температур. Изготавливают изоляционные обрамления на установке термопласт-автомат. Для обеспечения необходимого сцепления медного осадка к матрицам с целью удержания его до операции съема проводят обработку поверхности матриц стальными щетками на станках перед пуском в эксплуатацию. Изогнутые поверхности матриц выравнивают на гидропрессе. Отремонтированные матрицы перед загрузкой в электролизные ванны промывают в камере стрип-машины.

Аноды попадают в отделение в железнодорожных вагонетках в виде пакетов без упаковки. С помощью крана разгружают аноды с вагонеток в стеллажи. На стеллажах аноды вручную с помощью ломика устанавливают на фиксированном расстоянии, которое обеспечивается конструкцией стеллажа. Специальной бороной комплект анодов в количестве 34 штук зацепляют со стеллажей мостовым краном, перевозят до серии и загружают в ванну.

2. Технологическая часть
1. Технологическая схема участка электролиза меди
Приемный транспортер доставляет матрицы с катодным осадком в промывочную камеру, где происходит трехстадийная промывка катодов от остатков электролита и воска с нижних и боковых кромок матриц. После промывки матрицы с нарощенной медью направляют на узел сдирки, где на первой стадии путем изгиба матриц происходит локальное, а затем, на второй стадии при помощи ножей, полное отделение медных осадков от матрицы. Катоды формируют в стопы на очередных станциях стрип-машины - опрокидывающих и опускающих вилах. Взвешивают на вмонтированный в транспортер стрип-машины весах, и направляют на станцию упаковки. Упаковку производят на прессе и обвязочном устройстве стрип-машины. Пакеты катодов обвязывают стальной упаковочной лентой. Вывоз пакетов из отделения осуществляется железнодорожным или автомобильным транспортом.

Загрязненные воды из промывочной камеры через циркуляционные баки направляют через узел очистки от воска в систему кислых растворов и на корректировку электролита. Воск, смытый с матриц, поступает на узел сепарации и регенерации, где он накапливается, осаждается на воскоснимателе, стекает через фильтр в баки-сборники, проходит процесс регенерации. Далее сливается в формы для восковки нижней кромки матрицы. Растворение анода обычно длится 15 суток. После того, как значительная часть анода сработалось, серию отключают из электрической цепи, останавливают циркуляцию и производят выгрузку матриц с наращенным осадком, промывку с помощью специальных щеток поверхности анодного остатка от шлама и выгрузку анодных остатков. Анодные остатки зацепляют на борону, поднимают и с помощью крана выдерживают над ванной 30 секунд для стока электролита. Затем транспортируют к стационарной промывочной ванне. В промывочной ванне анодные остатки выдерживают около двух минут до полного смыва шлама с их поверхности. Промывку производят горячим конденсатом при температуре от 273 до 422 К.


Рисунок 4 - Принципиальная технологическая схема электролитического рафинирования меди
Промытые анодные остатки загружают в устройство укладки анодных остатков, стопируют высотой от 500 до 700 мм, грузят на вагонетки. Анодные остатки, составляющие 18% от первоначальной массы анода, отправляют на переплавку в медеплавильный цех. После выгрузки матриц и анодных остатков электролит откачивают из ванны через сборный коллектор в сборные баки с помощью сифона. В ванне оставляют слой раствора из шламовой пульпы высотой от 70 до 150 мм в зависимости от состава и структуры шлама. Чистку ванн от шлама производят с помощью вакуум-системы, которая представляет собой разводку трубопроводов от серии ванн к баку-сборнику, работающему под напряжением. Оставшийся анодный скрап, включая мелкую осыпь, вручную смещают в угол ванны, выгружают из ванны совком и укладывают в специальную металлическую тару. Отмывают в промывочной стационарной ванне, перегружают в тару и отправляют в медеплавильный цех.

Электролитическое производство меди размещают в просторных, хорошо освещенных зданиях, снабженных мощной приточно-вытяжной вентиляцией. В продольном направлении внутренняя часть здания разделена на пролеты, обслуживаемые мостовыми кранами грузоподъемностью от 10 до 50 т. На рабочих площадка. пролетов смонтированы электролизные ванны.

Процесс рафинирования меди протекает при непрерывном обмене электролита. Для этого в цехе смонтирована система его принудительной циркуляции.

Электролит, непрерывно вытекающий из ванн, после корректировки его состава и температуры возвращается в ванны по распределительной системе.

Постоянный электрический ток к ваннам поступает от преобразовательной подстанции, которая обычно расположена в отдельном здании рядом с корпусом электролиза.

Цех имеет несколько электрически. цепей постоянного тока, каждая из которых состоит из ряда последовательно соединенных электролизных ванн и самостоятельного источника постоянного тока - выпрямительного агрегата, установленного на преобразовательной подстанции.

Назначение очистного передела - поддерживать в электролите товарных ванн минимально допустимое содержание примесей.

Для этого часть электролита товарных ванн периодически направляют на обезмеживание в регенерационные ванны, а затем на извлечение никелевого купороса путем упаривания в вакуум-аппарата..

В отделении обработки готовой продукции катоды разбраковывают по внешнему виду, увязывают в пакеты (

1.5 т), маркируют и отгружают потребителям.