Файл: Тема концепция управления данными в современных информационных системах Цель лекции.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 24.11.2023
Просмотров: 242
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
На основании выше определенных понятий реляционную базу данных можно представить как набор отношений, имена которых совпадают с именами схем отношений в схеме БД.
2.Фундаментальные свойства отношений следуют из приведенных ранее определений.
Отсутствие кортежей-дубликатов. То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств по определению каждое множество состоит из различных элементов.
Из этого свойства вытекает наличие у каждого отношения так называемого первичного ключа — набора атрибутов, значения которых однозначно определяют кортеж отношения. Для каждого отношения по крайней мере полный набор его атрибутов обладает этим свойством.
Однако при формальном определении первичного ключа требуется обеспечение его минимальности, т.е. в набор атрибутов первичного ключа не должны входить такие атрибуты, которые можно отбросить без ущерба для основного свойства — однозначно определять кортеж.
Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных.
Во многих практических реализациях РСУБД допускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.
Отсутствие упорядоченности кортежей. Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве кортежей отношения дает дополнительную гибкость СУБД при хранении баз данных во внешней памяти и при выполнении запросов к базе данных.
Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, вообще говоря, не отношение, а некоторый упорядоченный список кортежей.
Отсутствие упорядоченности атрибутов. Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар {имя атрибута, имя домена}. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Это свойство теоретически позволяет, например, модифицировать схемы существующих отношений не только путем добавления новых атрибутов, но и путем удаления существующих атрибутов.
Однако в большинстве существующих систем такая возможность не допускается, и хотя упорядоченность набора атрибутов отношения явно не требуется, часто в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения.
Атомарность значений атрибутов. Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества значений (отношения). Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения или отношения, представленные в первой нормальной форме.
Потенциальным примером ненормализованного отношения является отношение, представленное на рис.4.2.
Рис.4.2. Ненормализованное отношение
Пример содержит бинарное отношение, значениями атрибута ОТДЕЛЫ которого являются отношения. При этом исходное отношение СОТРУДНИКИ является нормализованным вариантом отношения ОТДЕЛЫ:
СОТР_НОМЕР | СОТР_ИМЯ | СОТР_ЗАРП | СОТР_ОТД_НОМЕР |
2934 | Иванов | 112,000 | 310 |
2935 | Петров | 144,000 | 310 |
2936 | Сидоров | 92,000 | 313 |
2937 | Федоров | 110,000 | 310 |
2938 | Иванова | 112,000 | 315 |
Нормализованные отношения составляют основу классического реляционного подхода к организации баз данных. Они обладают некоторыми ограничениями (не любую информацию удобно представлять в виде плоских таблиц), но существенно упрощают манипулирование данными.
Например, необходимо выполнить два идентичных оператора занесения кортежа:
Зачислить сотрудника Кузнецова (пропуск номер 3000, зарплата 115,000) в отдел номер 320
и
Зачислить сотрудника Кузнецова (пропуск номер 3000, зарплата 115,000) в отдел номер 310.
Если информация о сотрудниках представлена в виде отношения СОТРУДНИКИ, оба оператора будут выполняться одинаково (вставить кортеж в отношение СОТРУДНИКИ). Если же работать с ненормализованным отношением ОТДЕЛЫ, то первый
оператор выразится в занесение кортежа, а второй — в добавление информации о Кузнецове в множественное значение атрибута ОТДЕЛ кортежа с первичным ключом 310.
3. Реляционная модель данных.
В основе реляционной модели данных лежат не графические, а табличные методы и средства представления данных и манипулирования ими. В реляционной модели для отображения информации о предметной области используется таблица, называемая «отношением». Строка такой таблицы называется кортежем, столбец —атрибутом. Каждый атрибут может принимать некоторое подмножество значений из определенной области — домена.
Фрагмент реляционной модели данных
Табличная организация БД позволяет реализовать ее важнейшее преимущество перед другими моделями данных, а именно — возможность использования точных математических методов манипулирования данными, и, прежде всего, аппарата реляционной алгебры и исчисления отношений. К другим достоинствам реляционной модели можно отнести наглядность, простоту изменения данных и организации разграничения доступа к ним.
Основным недостатком реляционной модели данных является информационная избыточность, что ведет к перерасходу ресурсов вычислительных систем. Однако именно реляционная модель данных находит все более широкое применение в практике автоматизации информационного обеспечения профессиональной деятельности.
Подавляющее большинство СУБД, ориентированных на персональные ЭВМ, являются системами, построенными на основе реляционной модели данных, так называемыми «реляционными» СУБД.
Как было отмечено, в основе реляционной модели данных лежит их представление в виде таблиц, что в значительной степени облегчает работу проектировщика БД, а в последующем и пользователя в силу привычности и распространенности такого варианта использования информации.
Данная модель была предложена Э.Ф. Коддом (Е. F. Codd) в начале 70-х годов и вместе с иерархической и сетевой моделями составляет множество так называемых великих моделей.
Наиболее распространенная трактовка реляционной модели данных принадлежит Дейту, согласно которому реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.
В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение.
В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД — реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй — на классическом логическом аппарате исчисления предикатов первого порядка.
Основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.
В целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД.
Первое требование называется требованием целостности сущностей. Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения был отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.
Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений. Например, требуется представить в реляционной базе данных сущность ОТДЕЛ с атрибутами ОТД_НОМЕР (номер отдела), ОТД_КОЛ (количество сотрудников) и ОТД_СОТР (набор сотрудников отдела). Для каждого сотрудника нужно хранить СОТР_НОМЕР (номер сотрудника), СОТР_ИМЯ (имя сотрудника) и СОТР_ЗАРП (заработная плата сотрудника).
При правильном проектировании соответствующей БД в ней появятся два отношения: ОТДЕЛЫ (ОТД_НОМЕР, ОТД_КОЛ ) с первичным ключом — ОТД_НОМЕР) и СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ, СОТР_ЗАРП, СОТР_ОТД_НОМ ) с первичным ключом — СОТР_НОМЕР).
Атрибут СОТР_ОТД_НОМ появляется в отношении СОТРУДНИКИ не потому, что номер отдела является собственным свойством сотрудника, а лишь для того, чтобы иметь возможность восстановить при необходимости полную сущность ОТДЕЛ. Значение атрибута СОТР_ОТД_НОМ в любом кортеже отношения СОТРУДНИКИ должно соответствовать значению атрибута ОТД_НОМ в некотором кортеже отношения ОТДЕЛЫ.
Атрибут такого рода называется внешним ключом, поскольку его значения однозначно характеризуют сущности, представленные кортежами некоторого другого отношения (т.е. задают значения их первичного ключа).
Говорят, что отношение, в котором определен внешний ключ, ссылается на соответствующее отношение, в котором такой же атрибут является первичным ключом.
Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать). Для вышеприведенного примера это означает, что если для сотрудника указан номер отдела, то этот отдел должен существовать.
Ограничения целостности сущности и по ссылкам должны поддерживаться СУБД. Для соблюдения целостности сущности достаточно гарантировать отсутствие в любом отношении кортежей с одним и тем же значением первичного ключа. С целостностью по ссылкам дела обстоят несколько более сложно.
При обновлении ссылающегося отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. Но как быть при удалении кортежа из отношения, на которое ведет ссылка?
Здесь существуют три подхода, каждый из которых поддерживает целостность по ссылкам.
Первый подход заключается в том, что запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа).
При втором подходе при удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным.
Третий подход (каскадное удаление) состоит в том, что при удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи.
В развитых реляционных СУБД обычно можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации определения внешнего ключа. Для принятия такого решения необходимо анализировать требования конкретной прикладной области.
4.Операции, выполняемые над отношениями