Файл: Конспект урока Информатика, 10 класс. Урок Тема Представление чисел в позиционных системах счисления.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.11.2023
Просмотров: 34
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Конспект урока
Информатика, 10 класс. Урок № 8.
Тема — Представление чисел в позиционных системах счисления
Урок посвящен теме «Представление чисел в позиционных системах счисления и переводу чисел из одной позиционной системы счисления в другую». В ходе урока школьники научатся различать позиционные и непозиционные системы счисления, узнают о развернутой форме числа. А также научатся переводить числа из одной системы счисления в другую.
Ключевые слова: Системы счисления, позиционная система счисления, непозиционная система счисления, базис системы счисления, схема Горнера, триада, тетрада, «компьютерные» системы счисления, «быстрый» перевод.
Учебник: Босова Л. Л, Босова А. Ю. Информатика 10 класс базовый уровень — БИНОМ Лаборатория знаний 2016 г.
Федерального центра информационных образовательных ресурсов:
http://fcior.edu.ru/
Мы постоянно оперируем числами, ежедневно, не слишком задумываясь о том, что они из себя изначально представляют.
Счет появился тогда, когда человеку потребовалось информировать своих сородичей о количестве обнаруженных им предметов. Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов свидетельствуют о том, что первоначально число предметов отображали равным количеством каких-либо значков:
точки, черточки. Такая система записи чисел называется единичной (унарной), т.к. любое число в ней образуется путем повторения одного знака, символизирующего единицу. Самым простым инструментом счета были пальцы на руках человека
Унарная система — не самый удобный способ записи чисел: при написании больших чисел получается очень длинная запись. С течением времени возникли иные, более удобные и экономичные системы: Вавилонская, Египетская, Славянская, Римская и другие. Рассмотренные записи чисел называются системами счисления.
Система счисления — это способ записи чисел.
Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемые цифрами.
Алфавит системы счисления
—это используемый в ней набор цифр.
Основание системы счисления —это количество цифр в алфавите (мощность алфавита).
Различают непозиционные и позиционные системы счисления.
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения этой цифры в числе.
Примером непозиционной системы, которая сохранилась до наших дней, может служить система Древнего Рима.
Римская система счисления. В качестве цифр использовались большие латинские буквы. А остальные числа записываются комбинациями этих знаков. Число формировалось из цифр, а также с помощью групп: Группа 1-го вида — несколько одинаковых подряд идущих цифр: XX = 20 (не более трёх одинаковых цифр); Группа 2-го вида — разность значений двух цифр, если слева стоит меньшая: СМ = 1000 – 100 = 900 (может стоять только одна цифра). Величина числа суммируется из значений цифр и групп 1-го или 2-го вида.
Позиционные системы счисления.
Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения (места, позиции) в записи числа. Основное достоинство любой позиционной системы счисления — возможность записи произвольного числа ограниченным количеством символов. Пример этой системы — привычная нам десятичная система счисления. Существует бесконечно много позиционных систем счисления. Каждая из них определяется целым числом q>1, называемым основанием системы счисления. Для записи чисел в позиционной системе счисления с основанием q нужен алфавит из q цифр. В q-ичной системе счисления q единиц какого-либо разряда образуют единицу следующего разряда. Последовательность чисел, каждое из которых задает «вес» соответствующего разряда, называется базисом позиционной системы счисления. Представление числа в виде суммы разрядных слагаемых называется развёрнутой формой записи числа в системе счисления с основанием q. Свёрнутой формой представления числа называется его запись в виде:
Свернутой формой записи числа мы пользуемся в повседневной жизни. Развёрнутая форма записи чисел также всем хорошо известна. Ещё в начальной школе дети учат записывать числа в виде суммы разрядных слагаемых. Если представить разряды в виде степеней основания, то получим:
Иногда бывает полезно преобразовывать развернутую форму записи числа так, чтобы избежать возведения основания в степень. Такую формулу представления числа называют схемой Горнера.
В наши дни большой практический интерес представляют двоичная, троичная, восьмеричная и шестнадцатеричная системы счисления. Двоичная система счисления — самая важная для компьютеров. В двоичной системе счисления основание — 2, а алфавит состоит из двух цифр 0 и 1.
Перевод числа, записанного в системе счисления с основанием q, в десятичную систему счисления основан на использовании развёрнутой формы записи чисел.
Алгоритм перевода в 10-ю систему счисления:
-
Записать развёрнутую форму числа. -
Представить все числа, фигурирующие в развёрнутой форме, в 10-й системе счисления. -
Вычислить значение полученного выражения.
Перевод в десятичную систему счисления целых двоичных чисел будет значительно проще, если вспомнить и использовать уже знакомую вам таблицу степеней двойки.
Рассмотрим пример:
Для перевода двоичного числа в десятичную систему счисления можно воспользоваться схемой Горнера.
-
Возьмем 1, соответствующую самому старшему разряду числа, и умножим её на 2. -
Прибавим следующую цифру. -
Умножим результат на 2. -
Прибавим следующую цифру. -
Умножим результат на 2. -
Прибавим следующую цифру. -
Умножим результат на 2.
Рассмотрим несколько примеров решения задач.
Десятичное число 57 в некоторой системе счисления записывается как 212. Определим основание этой системы счисления. Решение: поскольку в записи числа 212q есть цифра 2, то можно сказать, что q>2. Представим число 212q в развёрнутой форме и приравняем к 57.
Решим уравнение: это квадратное уравнение, его корни Х1 = –5,5; Х2 = 5. Так как основание системы счисления должно быть натуральным числом, то q = 5
Перевод целого десятичного числа в систему счисления с оcнованием q
Для перевода целого десятичного числа в систему счисления с основанием q следует:
-
Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получится частное, равное нулю. -
Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие алфавиту новой системы счисления. -
Составить число в новой системе счисления, записывая его, начиная с последнего остатка.
Для перевода целого десятичного числа в двоичную систему счисления можно воспользоваться таблицей степеней двойки. Рассмотрим пример: переведем число 529 в двоичную систему счисления.
Представим число в виде суммы степеней двойки, для этого:
— возьмем максимально возможное значение, не превышающее исходное число (512 < 529);
— найдем разность между исходным числом и этим значением (17);
— выпишем степень двойки, не превышающее эту разность и т. д. Когда исходное число было представлено в виде суммы, мы построили его двоичное представление, записав 1 в разрядах, соответствующих слагаемых, вошедшим в сумму, и 0 – во всех остальных разрядах.
52910 = 512 + 17 = 512 + 16 +1 = 29 + 24 + 20 = 10000100012
Перевод десятичной дроби в систему счисления с основанием q
Для перевода конечной десятичной дроби в систему счисления с основанием q следует:
-
Последовательно умножать данное число и получаемые дробные части произведения на основание новой системы счисления до тех пор, пока дробная часть произведения не станет равна нулю или не будет достигнута требуемая точность представления числа. -
Полученные целые части (цифры числа) привести в соответствие алфавиту новой системы счисления. -
Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.
При необходимости перевод целого числа
А из системы счисления с основанием p в систему счисления с основанием q можно свести к хорошо знакомым действиям в десятичной системе счисления: перевести исходное число в десятичную систему счисления, после чего полученное десятичное число представить в требуемой системе счисления.
Быстрый перевод чисел в компьютерных системах счисления
Способ «быстрого» перевода основан на том, что каждой цифре числа в системе счисления, основание которой q кратно степени двойки, соответствует число, состоящее из n (q=2n) цифр в двоичной системе счисления. Замена восьмеричных цифр двоичными тройками (триадами) и шестнадцатеричных цифр двоичными четвёрками (тетрадами) позволяет осуществлять быстрый перевод. Для этого:
-
Данное двоичное число надо разбить справа налево на группы по n цифр в каждой. -
Если в последней левой группе окажется меньше n разрядов, то её надо дополнить слева нулями до нужного числа разрядов. -
Рассмотреть каждую группу как n-разрядное двоичное число и записать её соответствующей цифрой системы счисления с основанием q = 2n.
Рассмотрим перевод целых чисел между двоичной и 16-ной системами счисления
Рассмотрим перевод дробной части между двоичной и восьмеричной системами
Чтобы записать правильную двоичную дробь в системе счисления с основанием q = 2n, достаточно:
двоичное число разбить слева направо на группы по n цифр в каждой; если в последней правой группе окажется меньше n разрядов, то её надо дополнить справа нулями до нужного числа разрядов; рассмотреть каждую группу как