Файл: Принцип действия мультивибратора, схема, параметры и характеристики.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 28

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


В общем случае в режим генерации колебаний можно перевести любой усилитель, охватив его цепью обратной связи

Tремя основными типами электронных генераторов сигналов синусоидальной формы являются LC генераторы, кварцевые генераторы и RC генераторы.

LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соедененных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний. LC генераторы используют в основном, в диапазоне радиочастот. На низких(звуковых) частотах удобнее применять RC генераторы, в которых для задания частоты колебаний используются резистивно - емкостная цепь
Принцип работы генератора синусоидальных колебаний основан на использовании моста Вина в цепи обратной связи операционного усилителя. Принцип действия генератора синусоидальных колебаний

Когда переключатель разомкнут, постоянный ток больше не подается на конденсатор, так что конденсатор начинает разряжаться. Когда это происходит, ток течет от отрицательной обкладки конденсатора через катушку обратно к другой обкладке конденсатора. Ток, проходящий через катушку, возбуждает магнитное поле вокруг катушки.Когда конденсатор полностью разряжается, ток через колебательный контур прекращается. В этот момент магнитное поле вокруг катушки достигает максимума. Поскольку больше нет тока через катушку, магнитное поле начинает спадать. Спадающее магнитное поле ведет к тому, что заставляет течь ток, направляя конденсатор в противоположном направлении.Когда магнитное поле вокруг катушки исчезает полностью, конденсатор снова разряжается и ток течет через катушку в обратном направлении. Ток через катушку снова возбуждает магнитное поле вокруг катушки. Когда конденсатор полностью разряжается, ток через цепь колебательного контура останавливается и магнитное поле вокруг катушки снова исчезает, заряжая конденсатор до его исходной полярности.


  1. Принцип действия усилителя мощности, схема, параметры и характеристики

Усилитель мощности – усилительный каскад, предназначенный для передачи в нагрузку заданной либо максимально возможной мощности при максимально возможном КПД и минимальных нелинейных искажениях.


Усилители мощности применяются в качестве оконечного (выходного), либо предоконечного (предвыходного) каскадов.

Усилители мощности бывают однотактные и двухтактные, причем первые работают в режиме класса «А», а вторые — в режиме классов «В» или «АВ». Однотактные усилители мощности применяются при относительно малых выходных мощностях
Важные параметры УМ:

1.коэффициент полезного действия - КПД;

2.коэффициент гармоник – Кг.

СХЕМА!!!!
ХАРАКТЕРИСТИКА!!


  1. Режимы работы усилительных каскадов, классы усиления, схемы, графики

В зависимости от значений постоянного тока и падения напряжения на транзисторе усилительного каскада и амплитуды входного усиливаемого сигнала различают основные режимы работы усилительного каскада: А, В, АВ, С, D.

В режиме класса А положение рабочей точки выбирается таким образом, чтобы при движении по линии нагрузки она не заходила в нелинейную начальную область коллекторных характеристик и в область отсечки коллекторного тока.  КПД усилительного каскада в режиме А невелик, всегда меньше 40 % . 

 

Режим класса В — это режим работы транзистора, при котором ток через него протекает в течение половины периода входного сигнала. Положение рабочей точки на вольт-амперной характеристике транзистора выбирается так, чтобы ток покоя был равен нулю

Небольшая мощность, потребляемая каскадом, позволяет получить высокий КПД усилителя — в пределах 60...70 %

Режим класса С — это режим работы активного элемента (транзистора), при котором ток через транзистор протекает в течение времени, меньшего половины времени входного сигнала . оскольку больше половины рабочего времени транзистор закрыт, мощность, потребляемая от источника питания, снижается, так что КПД каскадов повышается, приближаясь к 100 %



КЛАССЫ УСИЛЕНИЕ:

Класс А практически не используется в современных аудио устройствах. Главный минус класса А это низкая эффективность (КПД не более 25%). Такой усилитель потребляет много энергии, выделяет еще больше тепла но выдает мало мощности. Преимущество класса А это высокая точность воспроизведения и низкие искажения.



Класс B не используется в домашних аудио устройствах.

Класс AB самый распространенный на сегодня класс среди усилителей мощности. Большинство AV-ресиверов для домашних кинотеатров и стереоусилителей относятся к классу AB.

Усилители класса D обладают очень высокой эффективностью (90%)


  1. Принцип действия операционных усилителей, схемы, параметры и характеристики

Операционный усилитель (ОУ) – это многокаскадный усилитель постоянного тока, в котором в качестве входного каскада используется дифференциальный усилитель. ОУ имеет два входа и один выход. Один из его входов является инвертирующим, а другой – неинвертирующим. Используемое ниже схемное обозначение ОУ приведено на рис.3.1. Этот усилитель характеризуется:

  • высоким коэффициентом усиления, величина которого находится в пределах 104 – 106;

  • высоким значением входного сопротивления, обычно равным 105 – 107 Ом;

  • низким значением выходного сопротивления, находящимся в пределах от единиц Ом до нескольких сотен Ом.



Рис.3.1. Схемное обозначение операционного усилителя

Кроме клемм для подачи и съема сигналов, ОУ имеет клеммы для подключения источника постоянного напряжения, энергия которого преобразуется при усилении сигнала. Это - две клеммы (+Е  и - Е ) на рис.3.1 для подключения к двухполюснику источнику. Следует отметить, что для упрощения схем на ОУ в его схемном обозначении часто опускают изображения клемм питания.



Рис.3.2. Передаточная характеристика ОУ

Важнейшей характеристикой ОУ является передаточная (амплитудная) характеристика, вид которой приведен на рис.3.2. Она имеет две ветви, соответствующие неинвертирующему и инвертирующему входам. Каждая из ветвей имеет участки, где ОУ работает в линейном режиме (область малых входных напряжений u ) и два участка, на которых происходит насыщение усиления (при больших значениях входного напряжения). Как правило, в линейном режиме ОУ работает в составе аналоговых устройств, в режиме насыщения (нелинейном) – в составе импульсных устройств.


В связи с высокой величиной коэффициента усиления интервал значений входного напряжения, где ОУ работает в линейном режиме, весьма мал. Данное обстоятельство затрудняет применение ОУ без дополнительных схемных решений. Проблема обычно решается введением отрицательной обратной связи, при которой выход ОУ соединяется с его инвертирующим входом. При таком схемном решении величина сигнала, поступающего непосредственно на вход ОУ, оказывается уменьшенной по сравнению с входной на величину сигнала, передаваемого по цепи обратной связи. Подбором параметров цепи обратной связи добиваются того, что напряжение непосредственно на входе ОУ не выходит за пределы интервала значений, где обеспечивается работа усилителя в линейном режиме.

Значения напряжений Uвых max и Uвых max, при которых ОУ работает в режиме насыщения, отмеченные на рис.3.2, весьма близки к напряжениям ±Е  источника питания.

Приведенные на рис.3.2 характеристики построены для случаев, когда на один из входов ОУ подается напряжение, а другой вход заземлен. Если же на другой вход подается напряжение, отличное от нуля, то происходит смещение передаточной характеристики, что иллюстрируется рис.3.3. Величина смещения характеристики определяется значением напряжения смещения. Направление смещения зависит от полярности напряжения. Данные на рис.3.3,а соответствуют случаю, когда входной сигнал подается на неинвертирующий вход, а напряжение смещения – на инвертирующий вход. Данные на рис.3.3,б соответствуют случаю, когда входной сигнал подается на инвертирующий вход, а напряжение смещения – на неинвертирующий.



Рис.3.3. Смещение передаточной характеристики ОУ:

а - при подаче на инвертирующий вход напряжения Uсм,

б - при подаче на неинвертирующий вход напряжения Uсм

Состояние ОУ, в котором при нулевом напряжении смещения передаточная характеристика проходит через начало координат (u  = 0 при u  = 0), называется балансом. У реальных ОУ условие баланса обычно не выполняется. Основной причиной разбаланса является хотя бы небольшое, но наблюдающееся различие параметров элементов, входящих в мостовую часть схемы дифференциального усилительного каскада. В качестве параметра, характеризующего разбалансирование ОУ, принимается входное напряжение, соответствующее нулевому выходному напряжению (величина U
 на рис.3.4). Оно равно напряжению (по абсолютному значению), которое необходимо подать на вход ОУ для обеспечения баланса.



Рис.3.4. Передаточная характеристика ОУ

при наличии разбаланса

(пунктирные кривые)

Применение ОУ в конкретных схемах требует его предварительного балансирования. Это осуществляется путем подачи на один из входов ОУ соответствующего дополнительного напряжения.

Амплитудно-частотная характеристика ОУ является типичной для усилителей постоянного тока. Ее вид представлен на рис.2.14. Полоса пропускания частот, в которой допускается уменьшение коэффициента по мощности в два раза, обычно составляет десятки мегагерц. Это обеспечивает усиление без существенных искажений сигналов, обычно используемых в информационной технике.



  1. Принцип действия активных фильтров, схема, параметры и характеристики

Активный фильтр — один из видов аналоговых электронных фильтров, в котором присутствует один или несколько активных компонентов, к примеру, транзистор или операционный усилитель
Существует несколько различных типов активных фильтров:

Фильтр высоких частот — ослабляет (обычно значительно) амплитуды гармонических составляющих сигнала ниже частоты среза.

Фильтр низких частот — ослабляет (обычно значительно) амплитуды гармонических составляющих сигнала выше частоты среза.

Полосовой фильтр — ослабляет (обычно значительно) амплитуды гармонических составляющих сигнала выше и ниже некоторой полосы.

Режекторный фильтр — ослабляет (обычно значительно) амплитуды гармонических составляющих сигнала в определённой ограниченной полосе частот.

ПРИМЕР АКТИВНОГО ФИЛЬТРА ВЫСОКИХ ЧАСТОТ


АЧХ фильтра нижних частот



АЧХфильтра высоких частот
ПАРАМЕТРЫ!!!


  1. Принцип действия стабилизаторов напряжения, схемы

Стабилизатор напряжения — важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.