Файл: Высокотемпературное выщелачивание бокситов.docx

ВУЗ: Не указан

Категория: Диссертация

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 559

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Оглавление

Введение

Актуальность темы исследования

Степень разработанности темы

Задачи исследования:

Научная новизна:

Теоретическая и практическая значимость работы

Методология и методы диссертационного исследования

Положения, выносимые на защиту:

Степень достоверности и апробация результатов

Глава 1. Литературный обзор

Способы переработки низкокачественных высококремнистых бокситов

Процесс спекания

Комбинированный способ Байер-спекание. Комбинированный процесс объединяет в себе классический способ Байера и способ спекания. Существует два варианта этой технологии: параллельный и последовательный.В параллельном варианте Байер-спекания ветки существуют практически независимо друг от друга и используются для переработки бокситов различного качества. Кроме того параллельный вариант можно разделить еще на два: спекание с использованием двух- или трехкомпонентной шихты.В последовательном варианте Байер-спекания, который нашел большее распространение во всем мире, высококремнистый боксит сначала подвергаетсяклассическому способу Байера с целью извлечения глинозема. При этом допускаются высокие потери глинозема и щелочи с красным шламом.Красный шлам затем подвергается процессу спекания с целью извлечения глинозема и щелочи из ГАСНа. Кремнезем при этом связывается с кальцием в двухкальциевый силикат [4]. Раствор, полученный на второй стадии, часто используется на первой для переработки свежих порций боксита.Преимуществом комбинированного процесса (по сравнению со способом спекания) являются меньшие энергетические затраты, так как на спекание поступает меньшая масса боксита либо красного шлама по сравнению со спеканием всего боксита. Мальц [62] также отмечает, что образование спека с красным шламом происходит лучше, чем с бокситом. Кроме того, использование комбинированного процесса позволяет получить щелочно-алюминатный раствор с меньшим каустическим модулем.В России имеется большое количество информации по спеканию [63-72], так как процесс используется в промышленных масштабах более 70 лет. Хороший обзор Восточно-Европейской версии спекания дан в статье Прокопова [73] и в работе Райзнера [74]. Основной задачей в оптимизации процесса является снижение энергетических затрат.В статье Лиу [75] показаны относительные затраты энергии процесса спекания, комбинированного способа и процесса Байера (таблица 1.4), а также описаны шаги, которые предпринимались на заводе Женгжоу в Китае с 1995 по 2000 года для снижения относительных энергетических затрат комбинированного процесса на

Активация боксита.

Двойное выщелачивание.

Образование продуктов обескремнивания с низким содержанием щелочи.

Гидрохимическая обработка красного шлама известью.

Пути усовершенствования комбинированного способа Байер-

Постановка задачи исследования

Рисунок 2.1 – Ик-спектр сравнения пылей, улавливаемых на различных стадиях системы пылеулавливания: 1 (красный) – пылевая камера, 2 (зеленый) – группа циклонов, 3 (синий) – электрофильтр (двухкомпонентная шихта)Данные ИК-спектроскопии показали, что валентные и деформационные колебания химических связей пыли электрофильтров соответствуют следующим минеральным соединениям:3CaO·Al2O3·nCO2·11H2O (гидрокарбоалюминат кальция) 1430-1440 см-1, 2Na2O·2SiO2·2H2O (натриевый гидросиликат) с максимумом 1100-1000см-1, AlOOH (бёмит или диаспор) в зависимости от спекаемого боксита 1145 – 1152см-1, CaCO3 880см-1 (кальцит или арогонит), а так же Na2O·Al2O3·3H2O – 630см-1, 525-580см-1 [130]. Рисунок 2.2 – Рентгенограмма пыли электрофильтров трехкомпонентной шихтыРентгенофазовый анализ подтвердил наличие характерных межплоскостных расстояний в составе пыли электрофильтров для алюминатов (2.56Å) и ферритов натрия (4,27 Å, 2,98Å) (Рисунок 2.2) [131].Также выявлена в составе пыли фаза гидроксида натрия (Рисунок 2.3) угол 15,42-2θ с межплоскостным расстоянием 5,67Å и углы 31,56 и 38,16-2θ, с межплоскостными расстояниями 2,83Å и 2,34Å соответственно. Рисунок 2.3 – Рентгенограмма пыли электрофильтров двухкомпонентнойшихтыДанный вывод также можно сделать после анализа ИК-спектрограмм (рисунок 2.4). Рисунок 2.4 – Каустическая составляющая пылевозврата двухкомпонентных шихт: 1 (красный) – пылевая камера, 2 (зеленый) – группа циклонов, 3 (синий) –электрофильтрНа диаграмме рисунка 2.4 видно, что в районе 3500-3800 см-1 наблюдаются два интенсивных пика с максимумами 3620 см-1 и 3530 см-1, которые указывают на валентные колебания химических связей υН-ОН, характеризующие наличие в соединении гидроксил-ионов, что косвенно указывает на наличие гидроксидов щелочных металлов, а именно натрия.Других химических соединений с подобными частотными характеристиками в данной системе нет. Судя по интенсивности, преобладающее количество химических связей подобного типа находится в пыли электрофильтров (синий спектр). Это также подтверждается из рентгенограмм сравнения всех видов пылей двухкомпонентных шихт (Рисунок 2.5). Рисунок 2.5 – Рентгенограмма сравнения интенсивности пылей возврата спекания двухкомпонентных шихт: 1 – 2к–пыль электрофильтров, 2 – 2кс–группациклонов, 3 – 2кр-пылевая камераСудя по интенсивности пиков, все предположения по поводу концентрации каустической составляющей в ПЭФ подтверждаются.Известно, что при подготовке бокситовой шихты в качестве реагентов используются известняк и каустическая сода, которые при разложении взаимодействуют с составляющими боксит минералами с получением новых минеральных соединений. Образующаяся при спекании пыль в отличие от общей массы спека быстро проходит все зоны печи спекания, что препятствует полному протеканию всех твердофазных реакций.Таким образом, пыль, образующаяся от спекания бокситовых шихт, может содержать в своем составе химические соединения щелочных карбонатов. Поэтомумы исследовали пыль на предмет качественного состава карбонат содержащих минеральных соединений.Исследования рентгенофазовым методом четких результатов не принесли (рисунок 2.6 и 2.7). На рисунке 2.6 для двухкомпонентной шихты пики карбоната натрия не наблюдаются. Предположительно по причине того, что карбонаты щелочных металлов находятся в слабоокристализованном состоянии. Рисунок 2.6 – Сравнение рентгенограмм пылей двухкомпонентной шихты на предмет концентрации карбонатной соды: 1 – 2к–пыль электрофильтров, 2 – 2кс–группа циклонов, 3 – 2кр-пылевая камераРентгенограмма пылей трехкомпонентной шихты показана на рисунке 2.7. Рисунок 2.7 – Сравнение рентгенограмм пылей трехкомпонентной шихты на предмет концентрации карбонатной соды: 1 – 3к – пыль электрофильтров, 2 – 3кс–группа циклонов, 3 – 3кр-пылевая камераКак видно по диаграммам рисунка 2.7, для пылей трехкомпонентой шихты видны отчетливые пики карбоната натрия, при этом от пылевой камеры к электрофильтру концентрация фазы карбоната натрия убывает. Для уточнения результатов было принято решение исследовать образцы методом ДТАТак, по данным ДТА (дифференциально-термического метода исследований) можно сказать, что данные литературных источников [63] подтверждаются. Интерпретируя кривые ДТА на рисунках 2.8, 2.9 и 2.10, можно сделать вывод о том, что карбонаты находятся в составе пыли не во всех фракциях. Рисунок 2.8 – Результаты дифференциально-термического анализа пыли из пылевой камеры системы газоочисткиКрупность частиц пыли из пылевой камеры составляет от 300 мкм и выше.Эндотермический эффект при температуре 261 оС указывает на дегидратацию гидратированной формы алюмоферритов натрия и по данным ТГ анализа составляет около 25%. Эндотермический пик при 498 оС указывает на удаление структурированной воды в соединении типа Na2CO3∙10H2O (14% согласно ТГ), что характерно, так как это первая зона от холодного конца в системе пылеулавливания.Небольшой экзотермический эффект при 584 оС указывает на начало взаимодействия щелочи с минералами алюминия и железа с образованием алюминатов и ферритов натрия, на что также указывают следующие эндоэффекты при 722 оС и 815 оС, которые свидетельствуют о полном разложении карбонатнойщелочи и окончании процесса спекания при 1224-1245 оС, с чем связан наблюдаемый экзотермический эффект. Рисунок 2.9 - Дифференциально-термический анализ пыли из группыциклоновКрупность частиц пыли из группы циклонов: от 300 до 30мкм,Сравнивая кривые ДТА на рисунке 2.8 и 2.9, можно отметить, что по качественным характеристикам термических эффектов графики мало отличимы, однако появляется новое соединение кальцит (по данным ТГ 15%). По данным ТГ изменился только количественный состав остальных соединений. Так количество гидратированных соединений алюмоферритов увеличилось до 43%, соды до 26- 27%. Рисунок 2.10 – Дифференциально-термический анализ пылиэлектрофильтровКрупность частиц пыли электрофильтров: от 30 до 2мкм [63].На кривой ДТА пыли электрофильтров видно, что характеристики кривой отличаются от предыдущих стадий очистки отходящих газов вращающихся печей спекания. Удаление физической влаги отмечено совершенно другой геометрией эндотермических пиков.Появился более интенсивный эндотермический эффект при 103 оС, а характерный для соды при 114 оС уменьшился, что свидетельствует об убыли в пробе карбонатной составляющей, что согласуется с данными рентгенофазового анализа.Появление эндотермических эффектов при 246 оС и 292 оС, а также при 456оС и 518 оС, указывает на присутствие смеси карбонатов кальция и алюминия –ГКАК (гидрокарбоалюминат кальция), о чем помимо этого свидетельствует эндотермический эффект при 776 оС. На это также указывает ступенчатое удаление структурированной воды в процентах: 21-200 оС – 9,6%, 200-360 оС – 2,3%, 360-580оС – 5,8%, 580-780 оС – 7,1% [132].Однако выделить в этой смеси конкретное соединение, и тем более разделить, не представляется возможным. Одно можно сказать точно, карбонатной соды в материале данной стадии очистки отходящих газов меньше всего. На это явно указывает и экзотермический эффект при спекании 1230-1243 оС – прибыль массы составила 2,4%, в отличие от предыдущих стадий: 0,1% - пылевая камера, 0,2% - группа циклонов.Соответственно, щелочи в пыли электрофильтров больше, значит именно эта стадия газоочистки предпочтительней для дальнейших исследований. Как будет отмечено далее, это согласуется с усовершенствованием технологических параметров процесса спекания бокситовых шихт.Исследование возвратной пыли электрофильтров двух и трех компонентных шихт печей спекания уральских заводов на количественный состав было проведено методом рентгеноспектрального флуоресцентного анализа (РФА). Для этого использовался рентгенофлуоресцентный волнодисперсионный спектрометр последовательного действия XRF-1800 фирмы Shimadzu, Япония. Спектрометр предназначен для определения химического состава горных пород, руд и других объектов исследования.Режим работы рентгеновской трубки с родиевым анодом 40 кв, 95 ма.Кристалл- анализаторы: TAP (для Na, Mg), PET (Al, Si), Ge (P, S), LiF200 (для элементов от К до U).В таблице 2.1 представлен количественный анализ ПЭФ двухкомпонентой шихты, для сравнения также показан химический состав спёка.Таблица 2.1 – Химический состав пыли электрофильтров и спёка, полученных из двухкомпонентной и трехкомпонентной шихты

Выводы по главе

Глава 3. Влияние добавки пыли электрофильтров печей спекания на совместное выщелачивание бокситов и спеков

Изучение совместного выщелачивания бокситов, спеков и пылей электрофильтров в цикле Байера В мировой практике наиболее перспективный подход к оптимизации цикла Байера основан на применении процесса высокотемпературного выщелачивания бокситов [134-138]. Повышение температуры до 260–280 °С вместо принятых на сегодня 230–235 °С обеспечивает: резкое снижение теплоэнергетических затрат благодаря возможности максимально сблизить концентрации оборотного и алюминатного растворов и получить после выщелачивания боксита раствор с пониженным каустическим модулем (1,55 и ниже); повышение извлечения глинозема из боксита; увеличение скорости выщелачивания. На основании этого были предприняты попытки по изучению совместного выщелачивания бокситов, спеков, а также пылей электрофильтров в щелочно- алюминатных растворах процесса Байера при повышенных температурах. В таблице 3.1 приведен химический состав использованных компонентов.Таблица 3.1 – Исходный химический состав использованных компонентов (боксит СТБР, спек и ПЭФ-УАЗ)

Влияние пыли электрофильтров на процесс сгущения красных шламов

Выводы по главе

Глава 4. Предлагаемая технологическая схема и ее финансово- экономическая оценка

Заключение

Перспективы дальнейшей разработки темы:

Список литературы

в лабораторном термостате, по аналогии с системой пятикратной промывки красных шламов. В результате проведенных экспериментов получены следующие результаты:

При добавлении в лабораторный стакан репульпрированной навески ПЭФ чистый слив был получен при первой стадии промывки красного шлама (рисунок 3.6).



Рисунок 3.6 Сливы после первой стадии промывки красного шлама

В лабораторном стакане с красным шламом без добавки навески ПЭФ слив был мутным, с явным наличием мелкодисперсных частиц. Скорость осаждения основного количества твёрдой фазы красного шлама при первой стадии промывки была одинаковой.

Механизм взаимодействия мелкодисперсных частиц красного шлама отделения спекания с частицами ПЭФ заключается, предположительно, в первую очередь в поверхностных свойствах частиц пыли, благодаря которым осуществляется физическая сорбция коллоидных частиц шлама.

Пыль проходит до попадания в электрофильтр достаточную термообработку (от 700 до 220 оС), частички приобретают определенную поверхностную энергию, обуславливающую агрегацию, которая только усиливается из-за наличия в составе пыли легко растворимых соединений. Как следствие увеличивается удельная поверхность частиц.

Наличие в составе ПЭ такого универсального минерального соединения, как ГКАК (гидрокарбоалюминат кальция, ИК - спектр 1430- 1440 см-1), возможности которого описаны в работах [130,142], и могут быть рассмотрены как коагулирующие.

Однако данная технология работает только со шламами отделения спекания. Попытка применения вышеописанной технологии к операции сгущения красных шламов ветви гидрохимии в лабораторных условиях к
положительным результатам
не привела, это объясняется другим вещественным составом красных шламов ветви Байера.

Исходя из этого, предложена технологическая схема введения ПЭФ, минуя холодный конец печи спекания напрямую в технологический цикл ветви Байера.

Учитывая универсальные возможности гидрокарбоалюмината кальция (ГКАК) и положительные результаты выщелачивания пыли дистиллятом, предлагается смешивать пыль с пароконденсатом в мешалке, с последующей отправкой полученной пульпы в отделение сгущения на первую стадию с целью реализации коагулирующих-флокулирующих свойств ГКАК, а также возврата в процесс полезных растворимых соединений и щелочей с промводой.

Далее возникло предположение дозировать возвратную пыль электрофильтров напрямую в мешалку с оборотным раствором, для дальнейшего направления получившегося кека в отделение размола ветви Байера.

Для подтверждения были проведены лабораторные исследования с бокситом Тимана, известняком, возвратной пылью (ПЭФ) ветви спекания двух компонентных шихт. В качестве реагента использовался заводской оборотный раствор (Na2Ок =315,1 г/л; А12Оз=142,1 г/л; αк =3,65). Цель: сравнение скорости осаждения шламов после совместного выщелачивания и шламов после стандартного выщелачивания.

По данной задаче было проведена серия опытов: выщелачивание СТБР и пыли ЭФ, дозируемой в количестве 30% от веса боксита, при концентрации оборотного раствора по Na2Oк : 315, 280, 250 г/л. Проведено сгущение и промывка красного шлама по аналогии с промышленной схемой с дозировкой флокулянта CYTEC HX -300 из расчета 400 г/т шлама. Проба-свидетель: боксит СТБР + 2% CaO, выщелоченная в стандартных

условиях с заводским раствором.

Синтетический флокулянт разбавлялся в 2 захода, сначала до концентрации в 1-0,5 %, потом до 0,05 % дистиллированной водой. Сравнение скоростей видно из графиков на рисунках 3.7, 3.8, 3.9, 3.10. На стадии сгущения скорость осаждения шламов после совместного выщелачивания несколько хуже, чем пробы свидетеля.

Высота осветленного слоя, см
Это объясняется большим количеством исходного сырья на тот же объём раствора, но в последствии ситуация выравнивается. Четвёртая и 5-я стадии протекают аналогично третьей.

Рисунок 3.7 – Результаты экспериментов по сгущению красного шлама после выщелачивания боксита: Ряд 1- Шлам после стандартного выщелачивания, Ряд 2-

Шлам после совместного выщелачивания боксита и ПЭФ


Высота осветленного слоя, см


Рисунок 3.8 – Результаты экспериментов по сгущению красного шлама после первой стадии промывки: Ряд 1- Шлам после стандартного выщелачивания, 2-

Шлам после совместного выщелачивания боксита и ПЭФ


Высота осветленного слоя, см


Рисунок 3.9 – Результаты экспериментов по сгущению красного шлама после второй стадии промывки: Свидетель – Шлам после стандартного выщелачивания, Эксперимент Шлам после совместного выщелачивания боксита и ПЭФ


Высота осветленного слоя, см


Рисунок 3.10 – Результаты экспериментов по сгущению красного шлама после
третьей стадии промывки: Свидетель Шлам после стандартного

выщелачивания, Эксперимент – Шлам после совместного выщелачивания боксита и ПЭФ
В результате, влияние навески пыли электрофильтров на седиментационные свойства красных шламов после выщелачивания бокситов обнаруживается только при сгущении и начальных стадиях промывки, затем седиментационные свойства выравниваются. Как уже говорилось это влияние, скорее всего, связано с возросшим объемом сырья на выщелачивании.

    1. 1   ...   13   14   15   16   17   18   19   20   21

Выводы по главе




  1. Выявлено, что использование пыли электрофильтров в качестве дополнительного компонента при выщелачивании бокситов по способу Байера позволяет повысить степень извлечения глинозема в раствор на 1-2%, снизить количество добавляемой извести. Увеличение степени извлечения


глинозема достигается вследствие образования в присутствии спека или пыли электрофильтров алюможелезистых гидрогранатов, наличие которых в красных шламах подтверждается физико-химическими методами анализа. Образование алюможелезистых гидрогранатов также снижает на 0,2-0,9% содержание щелочи в красном шламе.

  1. Доказано, что высокотемпературное выщелачивание можно применять в параллельном варианте Байер – спекание для совместного выщелачивания бокситов, бокситовых спеков и пыли электрофильтров. При этом удается снизить концентрацию оборотного раствора на 50-70 г/л, а продолжительность выщелачивания на 30 минут без снижения степени извлечения глинозема.

  2. Показано, что использование пыли электрофильтров в качестве добавки для выщелачивания боксита позволяет снизить затраты кальцинированной соды, вводимой в процесс для восполнения потерь каустической извести. Это достигается не только снижением содержания каустической щелочи в красном шламе, но также и возвратом каустической и карбонатной щелочи в процесс вместе с пылью электрофильтров.

  3. Исследовано влияние добавки пыли электрофильтров на седиментационные свойства красного шлама, полученного при выщелачивании бокситовых спеков. В результате в присутствии пыли электрофильтров чистый слив был получен уже на первой стадии промывки, в то время как без навески ПЭФ раствор оставался мутным.

  4. Предложен механизм коагулирующего действия ПЭФ, который заключается в содержащемся в ней гидрокарбоалюминате кальция, а также в поверхностных свойствах самой пыли.

  5. Изучено влияние пыли электрофильтров на сгущение красных шламов после их совместного выщелачивания с бокситами. При этом показано, что добавка пыли электрофильтров при выщелачивании бокситов в цикле Байера практически не ухудшает седиментационных свойств красных шламов, а