Файл: Механизированная заготовка сена в фх "Веенка" с модернизацией ротационной косилки.rtf
Добавлен: 07.12.2023
Просмотров: 141
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
=152.4 mm (или 101,6mm)
Эти аппараты в настоящее время получим наиболее широкое применение на отечественных и зарубежных комбайнах и косилках. Они состоят из бруса, на котором через определенный шаг, в зависимости от убираемой культуры, установлены пальцы с противорежущими пластинами, и ножа, выполненного в виде полосы с закреплёнными на ней сегментами и имеющего одинарный или двойной пробег. Для предохранения от деформации используют также пальцы закрытого типа.
Существенно повысить производительность косилок и жаток с режущими аппаратами первой группы за счёт увеличения поступательной скорости машины нельзя из-за появления больших инерционных нагрузок, которые возникают с ростом числа ходов ножа. Одна из лучших машин этого типа, отечественная косилка КС-2,1Б, удовлетворительно работает при максимальной рабочей скорости не более 3,8м/с.
Во вторую группу входят косилки и жатки с двух ножевым режущим аппаратом, в котором уравновешены инерционные силы, возникающие при работе. Благодаря этому снижается вибрация машины и трактора, что повышает надежность, рабочую скорость, производительность и устойчивость агрегата.
К третьей группе жатвенных механизмов можно отнести режущие аппараты непрерывного действия – ценовые и ротационные. Первые получили ограниченное распространение вследствие недостаточной долговечности из-за значительного числа пар трения, работающих в абразивной среде. Ротационные аппараты устанавливают на косилках. Они незаменимы при уборке на каменистых почвах, скашивании малоценных трав с лугов и полей.
Как в нашей стране, так и за рубежом непрерывно совершенствуются технологии и машины для заготовки кормов. Предусматривается поднять уровень механизации работ, эффективность труда за счёт повышения скоростей, увеличения ширины захвата, использования новых рабочих органов, создание машин для интенсивности процесса сушки трав и в полевых условиях совмещения нескольких технологических операций. При традиционном методе заготовки сена у нас используется несколько типов и модификаций косилок, применение которых зависит от условий- конфигурации и размеров полей, мощности энергетических средств, климатических особенностей, вида растений и т.п. В системе машин для комплексной механизации выпускаются машины хорошо зарекомендовавшие себя – однобрусная универсальная навесная косилка КС-2,1Б; двухбрусная полунавесная косилка КДП-4,0 и трехбрусная прицепная косилка КТП-6,0.
Однако наиболее перспективными машинами являются машины с ротационными режущими аппаратами. Также машины не ограничиваются в скорости работы т.е. движения агрегата. Косилки с роторными режущими аппаратами имеют простую конструкцию и работают не зависимо от климатических особенностей и вида растений.
Конструкции режущих аппаратов позволяют разделить их на два основных типа. Первый тип имеет роторы, выполненные в виде вертикальных консольных валов с закреплёнными внизу несущими элементами с ножами. Несущим элементом является диск, вращающийся в горизонтальной плоскости. Привод роторов осуществляется сверху, что обуславливает верхнее расположение несущей рамы, под которой проходят срезанные растения.
Во втором типе аппаратов применяются роторы с нижним приводом. В этих аппаратах роторы с ножами смонтированы сверху плоской коробчатой рамы, внутри которой размещён привод роторов. Скошенная масса проходит над несущей рамой.
При нижнем приводе аппаратов трава укладывается в прокос, а при верхнем – формируется в валки.
Недостатком косилок с верхним приводом является большая металлоёмкость на 1м захвата. Формируемый валок, после скашивания, плохо продувается следовательно трава долго сохнет.
В связи с этим ротационные аппараты с нижним приводом в последние годы получили более широкое применение.
Фирма Звегерс (Нидерланды) создала образец ротационной косилки с комбинированным приводом, крайние роторы приводятся сверху, а два средних - снизу. Благодаря такой компоновке привода получена жесткая рама, что повышает надежность работы косилки. Пока это единственная конструкция косилки с комбинированным приводом.
1.7.Физико-механические свойства стеблей трав
Лучшими являются такие сроки кошения, которые позволяют получить сено с высоким содержанием протеина и каротина: для злаковых трав – это период колошения (до начала цветения), для бобовых – период бутонизации, естественных трав – период начала цветения. Заканчивать кошение трав следует до окончания периода полного цветения.
При очень низком срезе трав снижается их способность к воспроизводству, при высоком – теряется значительная часть урожая. В лесолуговой зоне высота среза естественных сенокосов 5-6 см. Высота среза сеяных трав 8…10 см.
Высота трав в среднем составляет 40…80 см. Урожайность трав в зависимости от зоны 0,5…3т/га. Среднее число стеблей на 1м2 составляет для трав – 1000…10000.
Таблица 1.2
Характеристика травостоя
Жесткость стеблей EI=49…646 H*см2
Работа затрачиваемая на срезание стеблей с площади 1м2, по данным академика Н.А.Карненко, составляет для зерновых 98-196 Дж/м2, для трав- 196…294Дж/ м2. Работа, необходимая для срезания одного стебля, составляет 2,26 Дж/ с.
1.8. Ротационный режущий аппарат
Основной задачей при расчёте ротационных косилок является определение минимальной скорости, необходимой для пере резания растительного материала. Если исходишь из прочности стебля и массы, которая вовлекается в деформацию ударом ножа, то при срезании единичного прямостоящего стебля минимальная скорость резания Vр выражается формулой:
(1.1)
где: kc – разрушающее напряжение среза;
kc = (2…3)*104кПа;
g – ускорение свободного падения, м/с2;
E – модуль упругости,
Е=1,1*107кПа;
-плотность материала стебля.
При данных значениях минимальная скорость резания будет равна:
При беспоткорном срезе, кроме энергии, расходуемой непосредственно на разрушение материала стебля, энергия расходуется на его изгиб, трение стерни о нижнюю поверхность диска и на отбрасывание срезанной части растений, поэтому энергоёмкость ротационных косилок больше, чем косилок с возвратно-поступательным движением ножа.
Написанные выражения минимальной скорости верны лишь для случая пере резания единичного стебля, а при срезании сплошной массы травостоя, при работе косилки в поле требуется введение поправочных коэффициентов.
Движение лезвия в этих условиях описывается следующим дифференциальным уравнением:
где: I-момент инерции подвижных частей установки; м4;
- угол поворота лезвия в тормозном режиме; град;
M- момент сопротивления травостоя срезу; м4.
(1.2)
где: - удельная сила резания (Н);
- участок лезвия, мм
- расстояние по радиусу от оси вращения до участка , мм.
Cила перерезания одного стержня не зависит от густоты стеблестоя.
Зависимость выражается формулой
(1.3)
где: а,b и с – коэффициенты, характеризующие физико-механические свойства материала и геометрию лезвия. (табл. 1.3)
Таблица 1.3. Значения коэффициентов
Зависимость удельной силы резания Рсот скорости Vpпоказана на графике.
Рис. 1.1 Зависимость удельной силы резания Рсв функции от скорости Vp
1-костер; 2-тимофеевка; 3-люцерна; 4-клевер.
Густота травостоя 1000 шт на 1м2
При затуплении лезвия до 100-120 мкм удельная сила резания увеличивается в среднем на 12-18%.
1.9. Оценка качества среза
За оценку качества среза можно принять отношение высоты стерни к высоте среза:
где: Нст- высота стерни, мм.
hср- высота среза, мм.
Эта величина всегда больше единицы и является коэффициентом увеличения высоты среза. Результаты экспериментов для некоторых трав представлены в виде зависимости от скорости Vp
Рис. 1.2. Зависимость от скорости резания
Эти аппараты в настоящее время получим наиболее широкое применение на отечественных и зарубежных комбайнах и косилках. Они состоят из бруса, на котором через определенный шаг, в зависимости от убираемой культуры, установлены пальцы с противорежущими пластинами, и ножа, выполненного в виде полосы с закреплёнными на ней сегментами и имеющего одинарный или двойной пробег. Для предохранения от деформации используют также пальцы закрытого типа.
Существенно повысить производительность косилок и жаток с режущими аппаратами первой группы за счёт увеличения поступательной скорости машины нельзя из-за появления больших инерционных нагрузок, которые возникают с ростом числа ходов ножа. Одна из лучших машин этого типа, отечественная косилка КС-2,1Б, удовлетворительно работает при максимальной рабочей скорости не более 3,8м/с.
Во вторую группу входят косилки и жатки с двух ножевым режущим аппаратом, в котором уравновешены инерционные силы, возникающие при работе. Благодаря этому снижается вибрация машины и трактора, что повышает надежность, рабочую скорость, производительность и устойчивость агрегата.
К третьей группе жатвенных механизмов можно отнести режущие аппараты непрерывного действия – ценовые и ротационные. Первые получили ограниченное распространение вследствие недостаточной долговечности из-за значительного числа пар трения, работающих в абразивной среде. Ротационные аппараты устанавливают на косилках. Они незаменимы при уборке на каменистых почвах, скашивании малоценных трав с лугов и полей.
Как в нашей стране, так и за рубежом непрерывно совершенствуются технологии и машины для заготовки кормов. Предусматривается поднять уровень механизации работ, эффективность труда за счёт повышения скоростей, увеличения ширины захвата, использования новых рабочих органов, создание машин для интенсивности процесса сушки трав и в полевых условиях совмещения нескольких технологических операций. При традиционном методе заготовки сена у нас используется несколько типов и модификаций косилок, применение которых зависит от условий- конфигурации и размеров полей, мощности энергетических средств, климатических особенностей, вида растений и т.п. В системе машин для комплексной механизации выпускаются машины хорошо зарекомендовавшие себя – однобрусная универсальная навесная косилка КС-2,1Б; двухбрусная полунавесная косилка КДП-4,0 и трехбрусная прицепная косилка КТП-6,0.
Однако наиболее перспективными машинами являются машины с ротационными режущими аппаратами. Также машины не ограничиваются в скорости работы т.е. движения агрегата. Косилки с роторными режущими аппаратами имеют простую конструкцию и работают не зависимо от климатических особенностей и вида растений.
-
Анализ других конструктивных схем ротационных режущих аппаратов
Конструкции режущих аппаратов позволяют разделить их на два основных типа. Первый тип имеет роторы, выполненные в виде вертикальных консольных валов с закреплёнными внизу несущими элементами с ножами. Несущим элементом является диск, вращающийся в горизонтальной плоскости. Привод роторов осуществляется сверху, что обуславливает верхнее расположение несущей рамы, под которой проходят срезанные растения.
Во втором типе аппаратов применяются роторы с нижним приводом. В этих аппаратах роторы с ножами смонтированы сверху плоской коробчатой рамы, внутри которой размещён привод роторов. Скошенная масса проходит над несущей рамой.
При нижнем приводе аппаратов трава укладывается в прокос, а при верхнем – формируется в валки.
Недостатком косилок с верхним приводом является большая металлоёмкость на 1м захвата. Формируемый валок, после скашивания, плохо продувается следовательно трава долго сохнет.
В связи с этим ротационные аппараты с нижним приводом в последние годы получили более широкое применение.
Фирма Звегерс (Нидерланды) создала образец ротационной косилки с комбинированным приводом, крайние роторы приводятся сверху, а два средних - снизу. Благодаря такой компоновке привода получена жесткая рама, что повышает надежность работы косилки. Пока это единственная конструкция косилки с комбинированным приводом.
1.7.Физико-механические свойства стеблей трав
Лучшими являются такие сроки кошения, которые позволяют получить сено с высоким содержанием протеина и каротина: для злаковых трав – это период колошения (до начала цветения), для бобовых – период бутонизации, естественных трав – период начала цветения. Заканчивать кошение трав следует до окончания периода полного цветения.
При очень низком срезе трав снижается их способность к воспроизводству, при высоком – теряется значительная часть урожая. В лесолуговой зоне высота среза естественных сенокосов 5-6 см. Высота среза сеяных трав 8…10 см.
Высота трав в среднем составляет 40…80 см. Урожайность трав в зависимости от зоны 0,5…3т/га. Среднее число стеблей на 1м2 составляет для трав – 1000…10000.
Таблица 1.2
Характеристика травостоя
Культура | Диаметр стеблей в плоскости среза мм | Высота стеблей см | Густота травостоя Шт. на 1м2 | Влажность % |
Клевер (фаза цветения) Костер безостый (фаза кошения) Овсяница луговая (фаза кошения) Люцерна (фаза Цветения) Тимофеевка (фаза Колошения) | 4-5 3-4 1,5-2,5 4-5 3-4 | 30-40 40-50 25-35 35-40 50-60 | 2500 2500 2500 1100 1100 | 82,2 74,1 66,1 75,3 72,7 |
Жесткость стеблей EI=49…646 H*см2
Работа затрачиваемая на срезание стеблей с площади 1м2, по данным академика Н.А.Карненко, составляет для зерновых 98-196 Дж/м2, для трав- 196…294Дж/ м2. Работа, необходимая для срезания одного стебля, составляет 2,26 Дж/ с.
1.8. Ротационный режущий аппарат
Основной задачей при расчёте ротационных косилок является определение минимальной скорости, необходимой для пере резания растительного материала. Если исходишь из прочности стебля и массы, которая вовлекается в деформацию ударом ножа, то при срезании единичного прямостоящего стебля минимальная скорость резания Vр выражается формулой:
(1.1)
где: kc – разрушающее напряжение среза;
kc = (2…3)*104кПа;
g – ускорение свободного падения, м/с2;
E – модуль упругости,
Е=1,1*107кПа;
-плотность материала стебля.
При данных значениях минимальная скорость резания будет равна:
При беспоткорном срезе, кроме энергии, расходуемой непосредственно на разрушение материала стебля, энергия расходуется на его изгиб, трение стерни о нижнюю поверхность диска и на отбрасывание срезанной части растений, поэтому энергоёмкость ротационных косилок больше, чем косилок с возвратно-поступательным движением ножа.
Написанные выражения минимальной скорости верны лишь для случая пере резания единичного стебля, а при срезании сплошной массы травостоя, при работе косилки в поле требуется введение поправочных коэффициентов.
Движение лезвия в этих условиях описывается следующим дифференциальным уравнением:
где: I-момент инерции подвижных частей установки; м4;
- угол поворота лезвия в тормозном режиме; град;
M- момент сопротивления травостоя срезу; м4.
(1.2)
где: - удельная сила резания (Н);
- участок лезвия, мм
- расстояние по радиусу от оси вращения до участка , мм.
Cила перерезания одного стержня не зависит от густоты стеблестоя.
Зависимость выражается формулой
(1.3)
где: а,b и с – коэффициенты, характеризующие физико-механические свойства материала и геометрию лезвия. (табл. 1.3)
Таблица 1.3. Значения коэффициентов
Культура | a | b | c |
Клевер Костер Тимофеевка Люцерна | 0,08 0,178 0,100 0,096 | 1,40 3,50 2,40 2,43 | 1,71 1,60 1,10 1,39 |
Зависимость удельной силы резания Рсот скорости Vpпоказана на графике.
Рис. 1.1 Зависимость удельной силы резания Рсв функции от скорости Vp
1-костер; 2-тимофеевка; 3-люцерна; 4-клевер.
Густота травостоя 1000 шт на 1м2
При затуплении лезвия до 100-120 мкм удельная сила резания увеличивается в среднем на 12-18%.
1.9. Оценка качества среза
За оценку качества среза можно принять отношение высоты стерни к высоте среза:
где: Нст- высота стерни, мм.
hср- высота среза, мм.
Эта величина всегда больше единицы и является коэффициентом увеличения высоты среза. Результаты экспериментов для некоторых трав представлены в виде зависимости от скорости Vp
Рис. 1.2. Зависимость от скорости резания