Файл: Механизированная заготовка сена в фх "Веенка" с модернизацией ротационной косилки.rtf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 07.12.2023

Просмотров: 145

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Расчет тяговой способности передач с нормальными и узкими клиновыми ремнями сводится к определению требуемого числа ремней по соотношению, вытекающему из условия:

, шт, (3.19)

Ft - полезная нагрузка, кН;

А - площадь сечения одного ремня, мм2 ;

Gz - коэффициент, учитывающий неравномерность распределения нагрузки

между ремнями в комплекте.; Cz = 0.851.



Значение Cz можно уточнять в зависимости от числа ремней в комплекте.

Z=3;

Cz = 0.8.


    1. Допускаемое полезное напряжение


Допускаемое полезное напряжение ременной передачи находят из условия прочностной надежности ремня.

1max <= e

В условии e - максимальное эффективное переменное напряжение, которое ремень может выдержать в течении Ne циклов.

Значение e находят из уравнения кривой усталости, получаемого экспериментально:

, мПа, (3.20)

где: м – показатель степени кривой усталости. На основании экспериментальных исследований для клинопеременных передач м = 11;

С – константа. определяемая экспериментально для каждого типа ремней,

С = 38.2;

Если ввести в рассмотрение число пробегов ремня в секунду:

, об/с ; (3.21)

где: V – скорость ремня м/с ;

L - длина ремня м;

;

то при постоянном режиме нагружения эффективное число циклов за весь срок службы

, (3.22)

где: Lh - срок службы ремня; Lh = 24000 ч

Zm - число шкивов;

циклов




Допустимое полезное напряжение при стандартных условиях работы

[t] = to·cp· c, (3.23)

где: cp - коэффициент динамичности для клиноременных передач. cp = 1.1;

c - коэффициент, учитывающий влияние на тяговую способность передачи угла обхвата, при =110 c =0.78;

to - допускаемое полезное напряжение передачи, мПа;

, мПа;

где bo - ширина ремня в нетральном слое; bo = 11мм;



Отсюда: [t]=2,451,10,78=2,1 мПа

Из проведенных расчетов видно, что условие работоспособности выполняется; т.е.

t <= [t]


3.8 Сила начального натяжения ремня
=0 c cp, (3.24)

где 0 = 0,67 – коэффициент тяги стандартной передачи;

=0,670,781,1=0,57

Далее вычисляем коэффициент q :

q = (1+)/(1-); (3.25)

q = (1+0,57)/(1-0,57) = 3,7

Вычисляем:

, н; (3.26)



F2 = F1 – Ft, H; (3.27)

F2 = 49 – 36 = 13Н;

Сила начального натяжения ветвей передачи:

Fo = 0,5(F1+F2), H (3.28)

Fo = 0,5(49+13) = 27H;


    1. Геометрические параметры ременной передачи


Основным показателем ременной передачи является диаметр шкива.

de = dp+2b,

где: dp – расчетный диаметр ремня, на нем располагается нейтральный слой

ремня, мм;

dp = 300мм;

de – внешний диаметр шкива для передачи клиновыми ремнями, мм.

de = 300+23,3 = 307мм.

Ширина шкива:

M = (n-1)e+2f, мм; (3.29)

где: n - число канавок на шкиве;

M = (3-1)15+210 = 50мм.

Толщина обода чугунных шкивов:

чуг = 1,2 h, мм; (3.30)

где: h = 8,7мм.

чуг = 1,2 8,7 = 10,4(мм).

Толщина обода стальных шкивов:

ст = 0,8 чуг, мм. (3.31)

ст = 0,8 10,4 = 8,4мм.

Чугунные литые шкивы из-за опасности разрыва от действия центробежных сил применяют при окружной скорости до 30м/с. При более высокой скорости шкивы должны быть стальными.

В нашем случае применяют стальные шкивы.

Минимальное межосевое расстояние в клиноременных передачах:

Qmin = 0,55(d1+d2)+h, мм. (3.32)

где: d1 – диаметр ведущего шкива, мм;

d2 – диаметр ведомого шкива, мм;

d2 = 150мм.

Qmin = 0,55(370+150)+8 = 204мм.

Максимальное межосевое расстояние по экономическим соображениям(увеличение габаритов и стоимости ремней) и для предотвращения поперечных колебаний ремней ограничивают значением:

Qmax = 1,8(d1+d2), мм. (3.33)

Qmax = 1,8(207+150) = 643мм.

Требуемая длина ремня для передачи при заданном межосевом расстоянии Q и угле обхвата = 110 определяется как сумма прямолинейных участков и дуг обхвата:

, мм. (3.34)


мм.

В результате произведенных расчетов мы выяснили основные геометрические показатели шкива, а так же требования, предъявляемые к ремням.

Остальные параметры являются справочными и сведены в таблице.
3.10 Определение долговечности подшипника 60208 привода ведущего шкива
Подшипник находится под нагрузкой:

Fr – радиальная сила; Fr = 2300Н.

FQ – осевая сила; FQ = 1500Н.

Внутреннее кольцо V=1) вращается с частотой n=2050мин-1

Из справочника известно, что динамическая грузоподъемность этого подшипника:

Cv = 32000Н; Cov = 17800Н.

Определим соотношение:

FQ/ Cov = 1500/17800 = 0,08. (3.35)

Этому отношению соответствует e 0,28

Определим соотношение:

(3.36)

Так, как это отношение превышает e = 0,28, то по таблице находим

x = 0,56 и (3.37)



Определим эквивалентную нагрузку.

Эквивалентную нагрузку для подшипников определяют с учетом особенности их работы в эксплуатационных условиях:

R = FэKKT = (XVFV + YFQ) FэKKT, (3.38)

где: V – коэффициент вращения;

V = 1 при вращении внутреннего кольца;

K - коэффициент безопасности, учитывающий влияние на долговечность подшипников характера внешних нагрузок;

KT - температурный коэффициент;



Номинальная долговечность

(3.39)

Lh = L/(610-5n) = 201/(610-52050) = 1634(ч)

Долговечность работы подшипника серии 60208 составляет 1634 часов.
3.11. Расчет шпоночного соединения ведущего шкива
Для передачи вращающего момента

T = 45Нм с вала на ведущий шкив применяют шпоночное соединение.

Найдем диаметр в среднем сечении конического участка длиной

L = 22мм


dср = d-0.005L (3.40)

где: d – диаметр вала,

dср = 37 – 0,00522 = 35,9мм.

Шпонка призматическая:

b = 10мм, h = 8мм

t1 = 5мм

Длина шпонки L = 22мм.

Рабочая длина:

Lp = L – b = 22-10 = 12мм.

Расчетные напряжения смятия:

, Н/мм2, (3.41)

T = 45Нм.

dср = 35,3 мм

Н/мм2,

что меньше [см] = 140Н/мм2 для стальной ступицы шкива.

Осевую фиксацию шкива обеспечиваем поджатием шлицевой гайкой.
4. Технологическая часть
Разработка технологических процессов входит основным разделом в технологическую подготовку производства и выполняется на основе принципов” Единой системы технологической подготовки производства”.

Разрабатываемый технологический процесс должен быть прогрессивным, обеспечивать повышение производительности труда и качества деталей, сокращения трудовых и материальных затрат на его реализацию.

Базовой исходной информацией для проектирования технологического процесса служат: рабочие чертежи деталей, технические требования, регламентирующие точность, параметр шероховатости поверхности и другие требования качества.


    1. Наплавка режущей кромки ножа


В процессе эксплуатации косилки происходит затупление режущей кромки ножа. Этот факт неблагоприятно сказывается на качестве среза. Так при затуплении лезвия до 100-120мм удельная сила резания увеличивается в среднем на 12-18%. При затуплении лезвия происходит расщепление волокон стебля, что замедляет отрастание на 5-8дней. В свою очередь при затуплении наблюдается повышение износа ножа и дальнейшего выхода его из строя.

Для устранения такого неблагоприятного фактора мы предлагаем производить наплавку режущей кромки более твердым материалом.

Это позволит нам улучшить качество среза на более длительный срок, а так же продлит срок службы ножа.

При на плавлении ножа, параллельно с вышеизложенным, мы добиваемся эффекта самозатачивания, что не мало важно для поддержания качественного среза.

Суть эффекта состоит в том, что в процессе работы материал ножа изнашивается быстрее т.к. имеет меньшую твердость, а наплавленный слой более медленно.