Файл: Тестовые задания для самопроверки (58) Раздел Парная регрессия и корреляция.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.12.2023
Просмотров: 143
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Тестовые задания для самопроверки (58)
Раздел 1. Парная регрессия и корреляция
1. Наиболее наглядным видом выбора уравнения парной регрессии является:
а) аналитический;
б) графический;
в) экспериментальный (табличный).
2. Рассчитывать параметры парной линейной регрессии можно, если у нас есть:
а) не менее 5 наблюдений;
б) не менее 7 наблюдений;
в) не менее 10 наблюдений.
3. Суть метода наименьших квадратов состоит в:
а) минимизации суммы остаточных величин;
б) минимизации дисперсии результативного признака;
в) минимизации суммы квадратов остаточных величин.
4. Коэффициент линейного парного уравнения регрессии:
а) показывает среднее изменение результата с изменением фактора на одну единицу;
б) оценивает статистическую значимость уравнения регрессии;
в) показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.
5. На основании наблюдений за 50 семьями построено уравнение регрессии , где – потребление, – доход. Соответствуют ли знаки и значения коэффициентов регрессии теоретическим представлениям?
а) да;
б) нет;
в) ничего определенного сказать нельзя.
6. Суть коэффициента детерминации состоит в следующем:
а) оценивает качество модели из относительных отклонений по каждому наблюдению;
б) характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака;
в) характеризует долю дисперсии , вызванную влиянием не учтенных в модели факторов.
7. Качество модели из относительных отклонений по каждому наблюдению оценивает:
а) коэффициент детерминации
;
б) -критерий Фишера;
в) средняя ошибка аппроксимации .
8. Значимость уравнения регрессии в целом оценивает:
а) -критерий Фишера;
б) -критерий Стьюдента;
в) коэффициент детерминации .
9. Классический метод к оцениванию параметров регрессии основан на:
а) методе наименьших квадратов:
б) методе максимального правдоподобия:
в) шаговом регрессионном анализе.
10. Остаточная сумма квадратов равна нулю:
а) когда правильно подобрана регрессионная модель;
б) когда между признаками существует точная функциональная связь;
в) никогда.
11. Объясненная (факторная) сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:
а) ;
б) ;
в) .
12. Остаточная сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:
а) ;
б) ;
в) .
13. Общая сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:
а) ;
б) ;
в) .
14. Для оценки значимости коэффициентов регрессии рассчитывают:
а) -критерий Фишера;
б)
-критерий Стьюдента;
в) коэффициент детерминации .
15. Какое уравнение регрессии нельзя свести к линейному виду:
а) ;
б) :
в) .
16. Какое из уравнений является степенным:
а) ;
б) :
в) .
17. Параметр в степенной модели является:
а) коэффициентом детерминации;
б) коэффициентом эластичности;
в) коэффициентом корреляции.
18. Коэффициент корреляции может принимать значения:
а) от –1 до 1;
б) от 0 до 1;
в) любые.
19. Какое из следующих уравнений нелинейно по оцениваемым параметрам:
а) ;
б) ;
в) .
Вопрос | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Ответ | б | б | в | а | а | б | в | а | а | б |
Вопрос | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
Ответ | б | в | а | б | в | б | б | а | в | |
Раздел 2. Множественная регрессия и корреляция
1. Добавление в уравнение множественной регрессии новой объясняющей переменной:
а) уменьшает значение коэффициента детерминации;
б) увеличивает значение коэффициента детерминации;
в) не оказывает никакого влияние на коэффициент детерминации.
2. Скорректированный коэффициент детерминации:
а) меньше обычного коэффициента детерминации;
б) больше обычного коэффициента детерминации;
в) меньше или равен обычному коэффициенту детерминации;
3. Число степеней свободы для остаточной суммы квадратов в линейной модели множественной регрессии равно:
а) ;
б) ;
в) .
4. Число степеней свободы для общей суммы квадратов в линейной модели множественной регрессии равно:
а) ;
б) ;
в) .
5. Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно:
а) ;
б) ;
в) .
6. Множественный коэффициент корреляции . Определите, какой процент дисперсии зависимой переменной объясняется влиянием факторов и :
а) 90%;
б) 81%;
в) 19%.
7. Для построения модели линейной множественной регрессии вида необходимое количество наблюдений должно быть не менее:
а) 2;
б) 7;
в) 14.
8. Стандартизованные коэффициенты регрессии :
а) позволяют ранжировать факторы по силе их влияния на результат;
б) оценивают статистическую значимость факторов;
в) являются коэффициентами эластичности.
9. Частные коэффициенты корреляции:
а) характеризуют тесноту связи рассматриваемого набора факторов с исследуемым признаком;
б) содержат поправку на число степеней свободы и не допускают преувеличения тесноты связи;
в) характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.
10. Частный -критерий:
а) оценивает значимость уравнения регрессии в целом;
б) служит мерой для оценки включения фактора в модель;
в) ранжирует факторы по силе их влияния на результат.
11. Несмещенность оценки параметра регрессии, полученной по МНК, означает:
а) что она характеризуется наименьшей дисперсией;
б) что математическое ожидание остатков равно нулю;
в) увеличение ее точности с увеличением объема выборки.
12. Эффективность оценки параметра регрессии, полученной по МНК, означает:
а) что она характеризуется наименьшей дисперсией;
б) что математическое ожидание остатков равно нулю;
в) увеличение ее точности с увеличением объема выборки.
13. Состоятельность оценки параметра регрессии, полученной по МНК, означает:
а) что она характеризуется наименьшей дисперсией;
б) что математическое ожидание остатков равно нулю;
в) увеличение ее точности с увеличением объема выборки.
14. Укажите истинное утверждение:
а) скорректированный и обычный коэффициенты множественной детерминации совпадают только в тех случаях, когда обычный коэффициент множественной детерминации равен нулю;
б) стандартные ошибки коэффициентов регрессии определяются значениями всех параметров регрессии;
в) при наличии гетероскедастичности оценки параметров регрессии становятся смещенными.
15. При наличии гетероскедастичности следует применять:
а) обычный МНК;
б) обобщенный МНК;
в) метод максимального правдоподобия.
16. Фиктивные переменные – это: