Файл: Практическая работа Демографическая емкость территорий Тема Основные положения классической экологии.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.12.2023
Просмотров: 339
Скачиваний: 1
СОДЕРЖАНИЕ
Практическая работа № 1. Демографическая емкость территорий
Практическая работа № 2. Загрязнение почвенного покрова
Практическая работа № 3. Методика расчета рассеивания выбросов в атмосферу
Статья 22 ФЗ от 04.05.1999 № 96-ФЗ «Об охране атмосферного воздуха» (ред. от 29.07.2018)
Практическая работа № 4. Методы и сооружения очистки сточных вод
Практическая работа № 5. Отходы производства и потребления
Практическая работа № 6. Санитарно-защитные зоны предприятий и иных объектов
Практическая работа № 7. Оценка здоровья населения как показатель экологического состояния в городах
Практическая работа № 8. Оценка экологического состояния водоемов по микробиологическим показателям
Практическая работа № 9. Экология региона
Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо-, жирокомбинатах и в быту.
Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. Биохимические системы более всего пригодны для очистки газов постоянного состава.
Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.
Плазмокаталитический метод – это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая – каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе.
При фотокаталитическом методе в основном используются катализаторы на основе TiO2, которые облучаются ультрафиолетом.
Аппараты очистки атмосферного воздуха
Для улавливания взвешенных частиц применяют различную аппаратуру. Наибольшее распространение получили циклонные аппараты для сухого механического пылеулавливания.
Очистка технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана осуществляется в аппаратах следующих типов:
1. Механические сухие пылеуловители: пылеосадочные камеры различных конструкций, инерционные пыле- и брызгоуловители, циклоны и мультициклоны. Пылеосадочные камеры улавливают частицы размером более 40–50 мкм, инерционные пылеуловители – более 25–30 мкм, циклоны – 10–200 мкм.
2. Мокрые пылеуловители (скрубберы, пенные промыватели, трубы Вентури и др.) более эффективны, чем сухие механические аппараты. Скруббер улавливает частицы пыли размером более 10 мкм, а с помощью трубы Вентури – размером 1 мкм.
3. Фильтры (масленые, кассетные, рукавные и др.) улавливают частицы пыли размером от 0,5 мкм.
4. Электрофильтры применяются для тонкой очистки газов. Они улавливают частицы размером от 0,01 мкм.
5. Комбинированные пылеуловители (многоступенчатые, включающие не менее двух различных типов пылеуловителей).
Выбор типа пылеуловителя зависит от характера пыли (от размеров пылинок и её свойств; сухая, волокнистая, липкая пыль и т.д.), ценность данной пыли и необходимой степени очистки.
Сухие пылеуловители
1) Гравитационные. Простейшим типом пылеуловителей являются пылеосадочные камеры, относящиеся к гравитационным пылеуловителям. Их действие основано на том, что скорость потока запыленного воздуха, поступающего в камеру и расширяющегося в ней, уменьшается, вследствие чего находящиеся в нем твердые частицы осаждаются под влиянием собственного веса.
2) Инерционные пылеуловители. К сухим инерционным пылеуловителям относятся циклоны, струйные ротационные пылеуловители типа ротоклон и др.
Циклоны представляют собой аппараты, в которых улавливание пыли происходит в результате инерционной сепарации. Циклоны широко применяются для очистки от пыли вентиляционных выбросов, а также находят большое распространение во многих отраслях промышленности (горнорудной, керамической, энергетической и др.).
Мокрые пылеуловители
Инерционные пылеуловители.
К мокрым инерционным пылеуловителям относятся центробежные скрубберы, циклоны-промыватели, пылеуловители Вентури и др. Степень очистки в скруббере колеблется от 86 до 99 % и повышается с увеличением удельного веса пыли, скорости движения воздуха во входном патрубке и с уменьшением диаметра корпуса.
Циклоны-промыватели применяют для очистки воздуха от различных видов пыли, кроме цементирующихся и волокнистых.
Пылеуловитель Вентури используют главным образом для очистки газов на предприятиях металлургической, химической и других отраслей промышленности, а также для улавливания пыли из вентиляционных выбросов. Действие пылеуловителя Вентури (турбулентного промывателя) основано на использовании энергии газового потока для распыления впрыскиваемой воды.
Пенные пылеуловители применяют для очистки от пыли нейтральных газов с температурой до 100 °С, которые не образуют в процессе промывки водой кристаллизующихся солей, забивающих отверстия решеток или отлагающихся на поверхностях аппарата.
Пылеуловители других типов
Тканевые пылеуловители. При их применении степень очистки воздуха может составлять 99 % и более. При пропускании запыленного воздуха через ткань содержащаяся в нем пыль задерживается в порах фильтрующего материала или на слое пыли, накапливающейся на его поверхности. Тканевые пылеуловители по форме фильтрующей поверхности выполняют рукавными и рамочными. В качестве фильтрующего материала применяют хлопчатобумажные ткани, фильтр-сукно, капрон, шерсть, нитрон, лавсан, стеклоткань и различные сетки. Тканевые рукавные пылеуловители получили большое распространение для улавливания тонких и грубых фракций пыли.
Электрические пылеуловители. Эффективность электрического пылеуловителя зависит от свойств очищаемого газа (воздуха) и улавливаемой пыли, загрязнения пылью осадительных и коронирующих электродов, электрических параметров пылеуловителя, скорости движения газа и равномерности его распределения в электрическом поле.
В электропылеуловителях содержащиеся в воздухе частицы пыли приобретают заряд и осаждаются на осадительных электродах. Эти процессы происходят в электрическом поле, образованном двумя электродами с разноименными зарядами. Один из электродов является одновременно и осадителем.
Фильтры.
Воздушные фильтры могут быть разделены на три класса, из которых фильтры I класса задерживают пылевые частицы всех размеров (при низшем пределе эффективности очистки атмосферного воздуха 99 %), фильтры II класса – частицы размером более 1 мкм (при эффективности 85 %) и фильтры III класса – частицы размером от 10 до 50 мкм (при эффективности 60 %).
Фильтры I класса (волокнистые) задерживают пылевые частицы всех размеров в результате диффузии и соприкасания, а также крупные частицы за счет их зацепления волокнами, заполняющими фильтр.
В фильтрах II класса (с более толстыми волокнами) частицы мельче 1 мкм задерживаются не полностью. Более крупные частицы эффективно задерживаются в результате механического зацепления и инерции. Задержание частиц крупнее 4–5 мкм в сухих фильтрах этого класса малоэффективно.
В фильтрах III класса, заполненных более толстыми волокнами, проволокой, перфорированными и зигзагообразными листами и т. п., в основном действует инерционный эффект. Для уменьшения пор и каналов в заполнении фильтров последние смачиваются. Эффективность и сопротивление фильтров внутри каждого из классов неодинаковы.
Сухие пористые фильтры. Рулонный волокнистый фильтр ФРУ выполнен в виде коробчатого каркаса, через сечение которого протекает очищаемый воздух. Каркас в верхней и нижней частях имеет катушки-барабаны. На верхнюю катушку наматывается в виде рулона фильтрующий материал, полотнище которого пропускается через живое сечение фильтра и закрепляется на нижней катушке. Воздух, проходя через полотнище, оставляет в нем пыль.
Химический и физический состав выбросов
Под загрязнением атмосферы следует понимать изменение ее состава при
поступлении примесей естественного или антропогенного происхождения. Вещества-загрязнители бывают трех видов: газы, пыль и аэрозоли. К последним относятся диспергированные твердые частицы, выбрасываемые в атмосферу и находящиеся в ней длительное время во взвешенном состоянии. К основным загрязнителям атмосферы относятся углекислый газ, оксид углерода, диоксиды серы и азота, а также малые газовые составляющие, способные оказывать влияние на температурный режим тропосферы: диоксид азота, галогенуглероды (фреоны), метан и тропосферный озон.
Основной вклад в высокий уровень загрязнения воздуха вносят предприятия черной и цветной металлургии, химии и нефтехимии, строительной индустрии, энергетики, целлюлозно-бумажной промышленности, а в некоторых городах и котельные.
Источники загрязнений – теплоэлектростанции, которые вместе с дымом
выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия (особенно цветной металлургии), которые выбрасывают в воздух
окислы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.
Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы образуются другие вторичные признаки.
Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170 % ежегодно добываемого твердого и жидкого топлива.
Основными вредными примесями пирогенного происхождения являются:
а) оксид углерода;
б) сернистый ангидрид;
в) серный ангидрид;
г) сероводород и сероуглерод;
д) оксиды азота;
е) соединения фтора;
ж) соединения хлора.