Файл: "Неравенства". Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.12.2023

Просмотров: 29

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
х = 0,65.

 

Примечание.

Заметим, что события А и В не являются независимыми. Действительно, вероятность произведения независимых событий была бы равна произведению вероятностей этих событий: P(A·B) = 0,25·0,25 = 0,0625, однако, по условию, эта вероятность равна 0,15.

35. Задание 4 № 286213

Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 16 спортсменов из России, в том числе Тарас Куницын. Найдите вероятность того, что в первом туре Тарас Куницын будет играть с каким-либо бадминтонистом из России.

Решение.

В первом туре Тарас Куницын может сыграть с  бадминтонистами, из которых  из России. Значит, вероятность того, что в первом туре Тарас Куницын будет играть с каким-либо бадминтонистом из России, равна

 

Ответ: 0,6.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,21. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

 

Решение.

Найдем вероятность того, что перегорят три лампы. Эти события независимые, вероятность их произведения равно произведению вероятностей этих событий: 0,21·0,21·0,21 = 0,009261.

Событие, состоящее в том, что не перегорит хотя бы одна лампа, противоположное. Следовательно, его вероятность равна 1 − 0,009261 = 0,990739.

 

Ответ: 0,990739.

Помещение освещается фонарём с двумя лампами. Вероятность перегорания лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение.

Найдем вероятность того, что перегорят обе лампы. Эти события независимые, вероятность их произведения равно произведению вероятностей этих событий: 0,3·0,3 = 0,09.

Событие, состоящее в том, что не перегорит хотя бы одна лампа, противоположное. Следовательно, его вероятность равна 1 − 0,09 = 0,91.

 

Ответ: 0,91

.

Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 4, но не дойдя до отметки 7 часов.

Решение.

На циферблате между четырьмя часами и семью часами три часовых деления. Всего на циферблате 12 часовых делений. Поэтому искомая вероятность равна:


 

Ответ: 0,25.