Файл: Содержание Введение. Современное состоянии в области применение ушгн на месторождениях ур общий раздел.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.01.2024
Просмотров: 113
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Сущность обработки заключается в периодической закачке водного раствора ингибитора отложения солей в ПЗП в виде оторочки продавочной жидкостью, адсорбции ингибитора на поверхности породы и постепенной десорбции его в процессе отбора жидкости из скважины. Вынос ингибитора добываемой жидкостью после продавки и пуска скважины в эксплуатацию до минимально необходимых концентраций, требуемых для ингибирования солей предопределяет период последствия и срок защиты нефтепромыслового оборудования от отложения солей и время между продавками ингибитора. Поэтому, чем продолжительнее вынос реагента (в достаточных для ингибирования количествах), тем эффективнее обработка скважины раствором ингибитора солей. Продолжительность выноса ингибитора в значительной мере зависит от величины адсорбции ингибитора солеотложений на поверхности породы пласта. При этом, чем больше адсорбция ингибирующего вещества и медленнее его десорбция с породы, тем продолжительнее и эффективнее предотвращения образования отложений солей.
Эффективность мер борьбы с солеотложением при добыче нефти зависит от комплексного подхода к решению данной проблемы. Необходимо знание физико-химических процессов и причин, вызывающих отложения солей в различных условиях залегания нефти, умение заранее прогнозировать, надежно контролировать и своевременно предотвращать возможное появление солевых осадков в процессе эксплуатации скважин. Особое внимание нужно уделять правильному выбору нужных методов борьбы с отложением солей, позволяющих добиться наибольшей их эффективности в конкретных промысловых условиях с учетом экономической целесообразности.
2.1.3. Асфальтосмолопарафиновые отложения и гидратообразования
При добыче нефти одной из проблем, вызывающих осложнения в работе скважин, нефтепромыслового оборудования и трубопроводных коммуникаций, являются асфальтосмолопарафиновые отложения (АСПО). Накопление АСПО в проточной части нефтепромыслового оборудования и на внутренней поверхности труб приводит к падению производительности системы, уменьшению межремонтного периода скважин, снижению эффективности работы насосных установок и ряду других.
Асфальтосмолопарафиноотложения - это сложная углеводородная смесь состоящая из парафинов (20-70 % по массе), асфальто-смолистых веществ (АСВ) (20-40 % по массе), силикагелевой смолы, масел, воды и механических примесей.
Парафины - углеводороды метанового ряда от С16Н34 до С64Н130. В пластовых условиях находятся в нефти в растворенном состоянии. По их содержанию (по массе) нефти (согласно ГОСТ 912-66) классифицируют на:
-малопарафиновые - менее 1,5 %;
-парафиновые - от 1,5 до 6 %;
-высокопарафиновые - более 6 %.
Парафины устойчивы к действию различных химических реагентов (кислот, щелочей и др.), легко окисляются на воздухе.
Высокомолекулярные парафины - церезины (от С37Н74 до С53Н108) - отличаются более высокой, чем обычные, температурой кипения, большей молекулярной массой и плотностью.
В состав асфальто-смолистых веществ входят азот, сера и кислород. АСВ обладают высокой молекулярной массой, нелетучий, имеют большую неоднородность. Содержание смолистых веществ в нефти возрастает в связи с ее испарением и окислением, а также при контакте с водой. Согласно классификации некоторых ученых, к группе смолистых соединений отнесены и асфальтены.
Асфальтены - порошковые вещества бурого или коричневого цвета, плотностью более единицы, массовое содержание которых в нефтях достигает 5,0 %. В асфальтенах содержится (по массе) 80,0-86,0 % углерода, 7,0-9,0 % водорода, до 9,0 % серы, 1,0-9,0 % кислорода и до 1,5 % азота, они являются наиболее высокоплавкой и малорастворимой частью осадков тяжелых компонентов нефти.
Согласно современным физико-химическим представлениям, нефтяные дисперсные системы относятся к классу коллоидов, в которых дисперсная фаза из АСВ диспергирована в мальтеновой дисперсионной среде. Очевидно, что физико-химические свойства и технологические характеристики нефтей во многом обусловлены межмолекулярным взаимодействием в системах "асфальтены-смолы" и "мальтены-смолы-асфальтены".
В пределах одного нефтедобывающего региона и даже отдельного месторождения компонентный состав АСПО меняется в широких пределах. Знание состава АСПО имеет практическое значение для определения оптимальных методов борьбы с ними, в частности, для выбора химических реагентов. Этот выбор часто осуществляется, исходя из типа АСПО (табл. 1). Для физико-химического исследования состава и структуры АСПО на практике известно множество методов, среди которых экстракционный, хроматографический, термический, спектральный, электрохимический и др.
Причины и условия образования АСПО. Выделены три стадии образования и роста АСПО. Первой стадией является зарождение центров кристаллизации и рост кристаллов. На второй стадии происходит осаждение мельчайших кристаллов на поверхности металла, а на третьей - осаждение на запарафининную поверхность более крупных кристаллов.
Таблица 1 - Классификация АСПО
| | | |
Группа АСПО | Подгруппа АСПО | Отношение содержания парафинов (П) к сумме смол (С) и асфальтенов (А), П/(С+А) | Содержание механических примесей, % |
Асфальтеновый(А) | А1 А2 А3 | <0,9 <0,9 <0,9 | <0,2 0,2-0,5 >0,5 |
Смешанный (С) | С1 С2 С3 | 0,9-1,1 0,9-1,1 0,9-1,1 | <0,2 0,2-0,5 >0,5 |
Парафиновый (П) | П1 П2 П3 | >1,1 >1,1 >1,1 | <0,2 0,2-0,5 >0,5 |
Основными факторами, влияющими на образование АСПО, являются:
- снижение давления на забое и связанное с этим нарушение гидродинамического равновесия газожидкостной системы;
- интенсивное газовыделение;
- уменьшение температуры в пласте и стволе скважины;
- изменение скорости движения газожидкостной смеси и отдельных ее компонентов;
- состав углеводородов в каждой фазе смеси;
- соотношение объема фаз;
- состояние поверхности труб.
Влияние давления на забое и в стволе скважины. В случае, когда забойное давление меньше давления насыщения нефти газом, равновесное состояние системы нарушается, вследствие чего увеличивается объем газовой фазы, а жидкая фаза становится нестабильной. Это приводит к выделению из нее парафинов. При этом нарушение равновесного состояния происходит в пласте и выпадение парафина возможно как в пласте, так и в скважине, начиная от забоя.
При насосном способе эксплуатации давление на приеме насоса меньше, чем давление насыщения нефти газом. Это может привести к выпадению парафина в приемной части насоса и на стенках эксплуатационной колонны. В колонне насосно-компрессорных труб (НКТ) образуются две зоны. Первая - выкидная часть насоса: здесь давление резко возрастает и становится больше давления насыщения. Вероятность отложения в этом интервале минимальна. Вторая - зона снижения давления до давления насыщения и ниже, здесь начинается интенсивное выделение парафина.
В фонтанных скважинах, при поддержании давления у башмака равным давлению насыщения, выпадения парафина следует ожидать в колонне НКТ.
Как показывает практика, основными местами образования отложений парафина являются: скважинные насосы, насосно-компрессорные трубы, выкидные линии от скважин, резервуары промысловых сборных пунктов. Наиболее интенсивно парафин откладывается на внутренней поверхности подъемных труб скважин.
2.1.4. Коррозия
Со вступлением месторождения на завершающую стадию, коррозия усиливается по следующим причинам: увеличение обводненности, износ оборудования, применяемые методы интенсификации. В связи с этим повышается число отказов добывающих скважин. Существуют факторы, усугубляющие коррозию. Одними из них являются: коррозионная усталость (при циклических нагрузках), фреттинг-коррозия (осложнение трением деталей, в результате чего скорость коррозии увеличивается), биокоррозия (воздействие жизнедеятельности микроорганизмов и бактерий), кавитация (схлопывание пузырьков газа при перепадах давлений). Один из наиболее опасных факторов – это содержание сероводорода. В присутствии такой среды образуются сульфиды железа, которые скапливаются около соединительных муфт на внешней стенке насосно-компрессной трубы (НКТ), вследствие чего образуются сквозные отверстия.
Среди различных методов борьбы с содержанием сероводорода выделяют применение химических реагентов – нейтрализаторов сероводорода (ФЛЭК-ПС-629, СНПХ-1517А). Механизм применения состоит во взаимодействии реагента с сероводородом, что приводит к образованию стабильных и малоактивных химических соединений.
На сегодняшний день существует множество методов борьбы с коррозией. Среди них пользуются популярностью покрытия изделий защитными коррозионно-стойкими металлами (хромирование, цинкование); покраска металлических изделий красками и лаками; легирование металла; использование специальных коррозионностойких материалов при создании оборудования; электрохимическая защита, осуществляемая путем присоединения к оборудованию металла-анода, который будет впоследствии разрушаться); изменение свойств коррозионной среды благодаря внесению ингибиторов.
Применение ингибиторов коррозии. При проведении работ по обработке призабойных зон зачастую применяют химические и термохимические методы. Такие обработки связаны с взаимодействием оборудования с агрессивной средой, поэтому становится необходимым добавлять ингибиторы коррозии с целью снижения повреждений. Это самый распространенный метод защиты, хотя и достаточно дорогостоящий. Наиболее популярными реагентами являются: уротропин, катапин-А, марвелан-К, И-1-А, В-2, ВИКОР-1А. В то же время представляет интерес поиска новых ингибиторов коррозии.
Применение ингибиторов хоть и продлевает срок службы оборудования, однако проблема защиты от коррозии остается открытой. В последнее время пользуются популярностью стеклопластиковые трубы (СПТ). В связи с ростом цен в металлургии, стоимость СПТ приближается к стоимости НКТ в антикоррозионном исполнении. Интерес нефтяных компаний к стеклопластиковым НКТ исходит от их эксплуатационных преимуществ: стойкость к коррозии, меньшая масса изделий,