Добавлен: 10.01.2024
Просмотров: 69
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
"Природа распорядилась в строении человеческого тела следующими пропорциями:
длина четырёх пальцев равна длине ладони,
четыре ладони равны стопе,
шесть ладоней составляют один локоть,
четыре локтя - рост человека.
Четыре локтя равны шагу, а двадцать четыре ладони равны росту человека.
Если вы расставите ноги так, чтобы расстояние между ними равнялось 1/14 человеческого роста, и поднимите руки таким образом, чтобы средние пальцы оказались на уровне макушки, то центральной точкой тела, равноудаленной от всех конечностей, будет ваш пупок.
Пространство между расставленными ногами и полом образует равносторонний треугольник.
Длина вытянутых рук будет равна росту.
Расстояние от корней волос до кончика подбородка равно одной десятой человеческого роста.
Расстояние от верхней части груди до макушки составляет 1/6 роста.
Расстояние же от верхней части груди до корней волос - 1/7.
Расстояние от сосков до макушки составляет ровно четверть роста.
Наибольшая ширина плеч - восьмая часть роста.
Расстояние от локтя до кончиков пальцев - 1/5 роста, от локтя до подмышечной ямки - 1/8.
Длина всей руки - это 1/10 роста.
Стопа - 1/7 часть роста.
Расстояние от мыска ноги до коленной чашечки равно четверти роста.
Расстояние от кончика подбородка до носа и от корней волос до бровей будет одинаково и, подобно длине уха, равно 1/3 лица."
Повторное открытие математических пропорций человеческого тела в XV веке, сделанное Леонардо Да Винчи и другими, стало одним из великих достижений, предшествующих итальянскому ренессансу.
Математика в медицине
Математика всем нужна. Наборы чисел, как ноты, могут быть мертвыми значками, а могут звучать музыкой, симфоническим оркестром... И медикам тоже. Хотя бы для того, чтобы грамотно прочитать обычную кардиограмму. Без знания азов математики нельзя быть докой в компьютерной технике, использовать возможности компьютерной томографии... Ведь современная медицина не может обходиться без сложнейшей техники.
Когда-то математики пришли в медицину с наивным представлением, что они легко вникнут в наши симптомы и помогут улучшить диагностику. С появлением первых ЭВМ будущее представлялось просто замечательным: заложил в компьютер всю информацию о больном и получил такое, что врачу и не снилось. Казалось, что машина может все. Но поле математики в медицине предстало огромным и невероятно сложным, а ее участие в диагностике - вовсе не простым перебором и компоновкой многих сотен лабораторных и инструментальных показателей. Так какие же математические методы применяются в медицине?
Моделирование – один из главных методов, позволяющих ускорить технический процесс, сократить сроки освоения новых процессов.
В настоящее время математику все чаще называют наукой о математических моделях. Модели создаются с разными целями – предсказать поведение объекта в зависимости от времени; действия над моделью, которые над самим объектом производить нельзя; представление объекта в удобном для обозрения виде и другие.
Моделью называется материальный или идеальный объект, который строится для изучения исходного объекта и который отражает наиболее важные качества и параметры оригинала. Процесс создания моделей называется моделированием. Модели подразделяют на материальные и идеальные. Материальными моделями, например, могут служить фотографии, макеты застройки районов и т.д. идеальные модели часто имеют знаковую форму.
Математическое моделирование относится к классу знакового моделирования. Реальные понятия могут заменяться любыми математическими объектами: числами, уравнениями, графиками и т.д., которые фиксируются на бумаге, в памяти компьютера.
Модели бывают динамические и статические. В динамических моделях участвует фактор времени. В статических моделях поведение моделируемого объекта в зависимости от времени не учитывается.
Итак, моделирование – это метод изучения объектов, при котором вместо оригинала (интересующий нас объект) эксперимент проводят на модели (другой объект), а результаты количественно распространяют на оригинал.
Таким образом, по результатам опытов с моделью мы должны количественно предсказать поведение оригинала в рабочих условиях. Причем распространение на оригинал выводов, полученных в опытах с моделью, не обязательно должно означать простое равенство тех или иных параметров оригинала и модели. Достаточно получить правило расчета интересующих нас параметров оригинала.
К процессу моделирования предъявляются два основных требования.
Во-первых, эксперимент на модели должен быть проще, быстрее, чем эксперимент на оригинале.
Во-вторых, нам должно быть известно правило, по которому проводится расчет параметров оригинала на основе испытания модели. Без этого даже самое лучшее исследование модели окажется бесполезным.
Статистика - наука о методах сбора, обработки, анализа и интерпретации данных, характеризующих массовые явления и процессы, т.е. явления и процессы, затрагивающие не отдельные объекты, а целые совокупности. Отличительная особенность статистического подхода состоит в том, что данные, характеризующие статистическую совокупность в целом, получаются в результате обобщения информации о составляющих ее объектах. Можно выделить следующие основные направления: методы сбора данных; методы измерения; методы обработки и анализа данных.
Методы обработки и анализа данных включают теорию вероятностей, математическую статистику и их приложения в различных областях технических наук, а также наук о природе и обществе. Математическая статистика разрабатывает методы статистической обработки и анализа данных, занимается обоснованием и проверкой их достоверности, эффективности, условий применения, устойчивости к нарушению условий применения и т.п. В некоторых областях знаний приложения статистики столь специфичны, что их выделяют в самостоятельные научные дисциплины: теория надежности - в технических науках; эконометрика - в экономике; психометрия - в психологии, биометрия - в биологии и т.п. Такие дисциплины рассматривают специфичные для данной отрасли методы сбора и анализа данных.
Примеры использования статистических наблюдений в медицине. Два известных профессора страсбургского медицинского факультета Рамо и Саррю сделали любопытное наблюдение относительно скорости пульса. Сравнив наблюдения, они заметили, что между ростом и числом пульса существует зависимость. Возраст может влиять на пульс только при изменении роста, который играет в этом случае роль регулирующего элемента. Число ударов пульса находится,таким образом, в обратном отношении с квадратным корнем роста. Приняв за рост среднего человека 1,684 м, Рамо и Саррю полагают число ударов пульса равным 70. Имея эти данные, можно вычислить число ударов пульса у человека какого бы то ни было роста. Фактически Кетле предвосхитил анализ размерности и аллометрические уравнения применительно к человеческому организму. Аллометрические уравнения: от греч. alloios — различный. В биологии большое число морфологических и физиологических показателей зависит от размеров тела; эта зависимость выражается уравнением: y = a • xb
Биометрия - раздел биологии, содержанием которого являются планирование и обработка результатов количественных экспериментов и наблюдений методами математической статистики. При проведении биологических экспериментов и наблюдений исследователь всегда имеет дело с количественными вариациями частоты встречаемости или степени проявления различных признаков и свойств. Поэтому без специального статистического анализа обычно нельзя решить, каковы возможные пределы случайных колебаний изучаемой величины и являются ли наблюдаемые разницы между вариантами опыта случайными или достоверными. Математико-статистич ские методы, применяемые в биологии, разрабатываются иногда вне зависимости от биологических исследований, но чаще в связи с задачами, возникающими в биологии и медицине.
Применение математико-статисти еских методов в биологии представляет выбор некоторой статистической модели, проверку её соответствия экспериментальным данным и анализ статистических и биологических результатов, вытекающих из её рассмотрения. При обработке результатов экспериментов и наблюдений возникают 3 основные статистические задачи: оценка параметров распределения; сравнение параметров разных выборок; выявление статистических связей.
Области применения математических методов
Потребность в математическом описании появляется при любой
попытке вести обсуждение в точных понятиях и даже если это касается таких
сложных областей, как искусство и этика.
Важен вопрос о том, в каких областях медицины применимы
математические методы. Примером может служить область медицинской
диагностики. Для постановки диагноза врач совместно с другими
специалистами часто бывает вынужден учитывать самые разнообразные
факты, опираясь отчасти на свой личный опыт, а отчасти на материалы,
приводимые в многочисленных медицинских руководствах и журналах.
Общее количество информации увеличивается со все возрастающей
Интенсивность , и есть такие болезни, о которых уже столько написано, что один человек не в состоянии в точности изучить, оценить, объяснить и
использовать всю имеющуюся информацию при постановке диагноза в
каждом конкретном случае и тогда приходит на помощь математика, которая
помогает структурировать материал. В тех случаях , когда задача содержит
большое число существенных взаимозависимых факторов , каждый из
которых в значительной мере подвержен естественной изменчивости, только
с помощью правильно выбранного статистического метода можно точно
описать , объяснить и углубленно исследовать всю совокупность
взаимосвязанных результатов измерений.
Если число факторов или важных результатов настолько велико, что
человеческий разум не в состоянии их обработать даже при введении
некоторых статистических упрощений, то обработка данных может быть
произведена на электронной вычислительной машине.
Математика и фармакология
Фа
рмакология - это один из самых сложных предметов медицины. На сегодняшний день известно уже более 10000 различных лекарственных препаратов. При этом можно с полной уверенностью утверждать, что только с помощью высокоточных математических методов можно рассчитать взаимодействие данных препаратов в организме конкретного больного. Именно благодаря этим методам врачи получают возможность подобрать наиболее оптимальные дозы нужного препарата и в результате обеспечить максимально эффективное лечение и быстрое выздоровление пациента.
Особое значение в фармакологии получило математическое моделирование, которое помогает установить лечебную и смертельную дозы используемых лекарств. Чаще всего размеры устанавливаются экспериментальным методом, но далеко не во всех случаях полученные данные являются достоверными. В таком случае используется метод математического моделирования на базе полученной экспериментальным путем информации. В результате врачи получают возможность определять пределы дозировки лекарственных веществ и устанавливать своим пациентам эффективные программы лечения и последующего восстановления.
Так, например, именно благодаря математическим расчетам врач может установить дозу для своего пациента, которая будет не смертельной, а лечебной. Пренебрегать этим нельзя, поскольку неправильная дозировка может привести к летальным исходам. Так именно по этой причине умер король поп-музыки Майкл Джексон. С передозировкой медицинскими препаратами также связывают недавнюю смерть легендарной Уитни Хьюстон. При этом весьма примечательно, что обе американские звезды умерли при приеме аппарата "Ксанакс", который также известен под названием "Алпрозолам". Он пользуются большой популярностью в США.
Безусловно, существуют и обратные примеры. Так правильная дозировка позволяет значительно ускорить восстановление спортсменов после полученных травм и проведенных операций. К примеру, бывший игрок лондонского Арсенала и сборной Хорватии Эдуардо после перелома ноги восстановился всего лишь за 8 месяцев, хотя стандартный срок выздоровления после такого повреждения не менее года.
В результате можно прийти к выводу, что использование математики позволяет не только избежать вышеуказанных последствий, но и ускорить процесс лечения.
История развития понятия «деонтология»
Решение важнейших задач - повышение качества и культуры медицинской помощи населению страны, развитие ее специализированных видов и осуществление широких профилактических мероприятий во многом определяется соблюдением принципов медицинской деонтологии (от греч. «деон» – должное и «логос» – учение) – учения о должном в медицине.