Файл: Функции нескольких переменных с примерами решения Функции нескольких переменных.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.01.2024
Просмотров: 65
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
определялся как главная, линейная относительно , часть приращения функции, равная произведению
Обобщая определение дифференциала функции на случай двух независимых переменных, приходим к следующему определению.
Определение. Дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.
Учитывая, что для функций согласно (15.3) формулу дифференциала (15.3) можно записать в виде
или
Определение. Функция называется дифференцируемой в точке , если ее полное приращение может быть представлено в виде
где — дифференциал функции, — бесконечно малые при
Таким образом, дифференциал функции двух переменных, как и в случае одной переменной, представляет главную, линейную относительно приращений часть полного приращения функции.
Можно показать, что если полное приращение функции представляет геометрически приращение аппликаты поверхности
, то дифференциал функции есть приращение аппликаты касательной плоскости к поверхности в данной точке, когда переменные получают приращения (см. рис. 15.6).
Следует отметить, что для функции одной переменной существование конечной производной и представление приращения функции в виде (9.1), т.е. , являются равнозначными утверждениями, и любое из них могло быть взято за определение дифференцируемости функции.
Для функции нескольких переменных дело обстоит иначе: существование частных производных является лишь необходимым, но недостаточным условием дифференцируемости функции.
Следующая теорема выражает достаточное условие дифференцируемости функции двух переменных.
Теорема. Если частные производные функции существуют в окрестности точки и непрерывны в самой точке , то функция дифференцируема в этой точке.
Обобщая определение дифференциала функции на случай двух независимых переменных, приходим к следующему определению.
Определение. Дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.
Учитывая, что для функций согласно (15.3) формулу дифференциала (15.3) можно записать в виде
или
Определение. Функция называется дифференцируемой в точке , если ее полное приращение может быть представлено в виде
где — дифференциал функции, — бесконечно малые при
Таким образом, дифференциал функции двух переменных, как и в случае одной переменной, представляет главную, линейную относительно приращений часть полного приращения функции.
Можно показать, что если полное приращение функции представляет геометрически приращение аппликаты поверхности
, то дифференциал функции есть приращение аппликаты касательной плоскости к поверхности в данной точке, когда переменные получают приращения (см. рис. 15.6).
Следует отметить, что для функции одной переменной существование конечной производной и представление приращения функции в виде (9.1), т.е. , являются равнозначными утверждениями, и любое из них могло быть взято за определение дифференцируемости функции.
Для функции нескольких переменных дело обстоит иначе: существование частных производных является лишь необходимым, но недостаточным условием дифференцируемости функции.
Следующая теорема выражает достаточное условие дифференцируемости функции двух переменных.
Теорема. Если частные производные функции существуют в окрестности точки и непрерывны в самой точке , то функция дифференцируема в этой точке.