Файл: 1. Химическая технология научная основа химического производства.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.01.2024
Просмотров: 272
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Производители выпускают удобрения в твердом и жидком виде. По схеме производства удобрений изготовление веществ в жидкой форме (аммиачной воды, аммиака) — процесс более простой, но продукция требует использования специального транспорта и складов. Твердые выпускают в виде гранул разных фракций. Изготавливают химическим синтезом. Самые распространенные твердые туки — соли аммония, фосфорные удобрения, преципитат, калийные удобрения.
Технологии производства минеральных удобрений варьируются с учетом сырья и вида готовой продукции:
•азотные изготавливаются из азотной кислоты и аммиака. Примерно 70 % азотных удобрений — это мочевина и аммиачная селитра;
•фосфорные получают, обрабатывая обогащенные фосфаты серной кислотой. Качество продукции зависит от исходных характеристик природного сырья. При обработке фосфорной кислотой получается двойной суперфосфат. Фосфоритную муку получают дроблением фосфоритов;
•калийные изготавливают из калийных солей, запасы которых в России по большей части сконцентрированы в Верхнекамском месторождении. Внедрение новых способов обработки свело к минимуму слеживаемость удобрения и упростило цикл транспортировки;
•комплексные получают путем химического взаимодействия исходных компонентов.
49.Электрохимические производства.
Электрохимическая промышленность, базирующаяся на электрохимических процессах – одна из крупнейших отраслей народного хозяйства. Она включает электролиз водных растворов, расплавленных сред и производство химических источников тока (аккумуляторы, гальванические элементы, топливные элементы и т.д.).
Методом электролиза водных растворов осуществляют энергохимический синтез многих неорганических и органических веществ – гипохлоритов, хлоратов, перхлоратов, хлорной кислоты, перманганатов, диоксида марганца, а также адипонитрила, антидетонаторов, например, тетраэтилсвинца, гидрохинона, фторпроизводных ряда органических соединений и др. На электролизе водных растворов основаны гидроэлектрометаллургия и гальванотехника.
Электролиз расплавленных сред используют в металлургии для производства и рафинирования металлов, которые не могут быть получены электролизом водных растворов – целого ряда легких, тугоплавких, благородных и редких металлов
, а также сплавов.
Важнейшая область электрохимии – получение и эксплуатация химических источников тока. Химические источники тока подразделяются на первичные и вторичные.
К первичным относятся источникам энергии, которые могут быть использованы лишь однократно. К ним относятся батареи и гальванические элементы. Вторичные источники тока – аккумуляторы, работоспособность которых восстанавливается пропусканием электрического тока.
50.Производство вяжущих материалов.
Различают органические и неорганические (минеральные) вяжущие вещества.
Органические вяжущие вещества представляют собой природные пли искусственные твердые, вязкопластичные или жидкие (при нормальной температуре) продукты, способные изменять свои физикомеханические свойства в зависимости от температуры. В зависимости от химического состава, вида сырья и технологии производства органические вяжущие вещества разделяют на битумы и дёгти.
Неорганические вяжущие вещества - это материалы, которые при смешивании с водой образуют пластично-вязкое тесто, способное со временем самопроизвольно затвердевать в результате физико-химических реакций взаимодействия вяжущего с водой, переходя в камневидное состояние. После затвердевания вяжущее вещество скрепляет в одно целое, т. с. связывает между собой, зерна сыпучих материалов - песка, гравия, щебня, образуя искусственный камневидный материал - бетон или раствор.
В зависимости от условий твердения их подразделяют на:
- воздушные вяжущие, твердеющие на воздухе и способные длительно сохранять свою прочность только на воздухе;
- гидравлические, способные твердеть па воздухе и в воде;
- вяжущие гидротермального твердения (условия твердения -давление насыщенного пара 0,8-1,2 МПа и температура 175-200 °С).
51.Производство стекла.
Производство стекла основано на использовании натуральных компонентов, которые в процессе повторной переработки не теряют качеств и не оставляют отходов. Стекло имеет несколько вариантов агрегатных состояний на разных этапах производства. Это аморфное тело, состоящее из соды, кварцевого песка, доломита, известняка и различных добавок. Оно получается методом расплава и в твердом состоянии теряет свойства кристаллического вещества. Классический способ базируется на плавке исходного сырья с добавлением усилителей, красителей, глушителей и обесцвечивателей. Полученную массу охлаждают, чтобы не было мелких кристаллов. Она должна объединиться в монолит. Предполагает вертикальную машинную вытяжку материала. Стекло
подвергается плавлению в стекловаренной печи, затем полученная жидкая стекломасса вытягивается с помощью прокатных валов, перемещается в шахту охлаждения и распределяется на куски. На заключительном этапе лист шлифуется и полируется. Толщина изделия зависит от скорости вытягивания. Этот способ получил название – «вытянутое стекло». Флоат-метод заключается в том, что вязкая стеклянная масса после печи принимает горизонтальное положение. На плоском оборудовании она подается во флоат-ванную с расплавленным оловом и газовоздушной атмосферой. Материал плывет по поверхности, обретает форму и вбирает в себя микроскопические частицы олова. После чего стекломасса охлаждается и подвергается отжигу. Полотно обретает гладкую поверхность. Его не нужно обрабатывать, полировать или шлифовать.
52.Металлургия. Руды и способы их переработки.
Сырье в производстве металлов - металлические руды. Металлической рудой называется горная порода, содержащая в своем составе один или несколько металлов в таких соединениях, количествах и концентрациях, при которых возможно и целесообразно их извлечение. По качеству и количеству металла руды делят на промышленные и непромышленные. К промышленным относятся те руды, в которых содержание металла превышает его рентабельный минимум, т. е. то минимальное содержание основного металла, которое определяет возможность и целесообразность металлургической переработки данной руды. По числу содержащихся в руде металлов их делят на монометаллические полиметаллические. Подготовка руды состоит из ряда механических и физико-химических операций, содержание которых зависит от состава руды и формы химического соединения металла в ней. К таким операциям относят измельчение или укрупнение, классификация и обогащение руды, а также превращение содержащего металл соединения в форму, пригодную для восстановления. Для ускорения необходимых химических реакций металлургические процессы проводятся или с применением высоких температур и называются пирометаллургическими, или обработка руды ведется водными растворами реагентов; такие процессы называются гидрометаллургическими. Типовыми разновидностями пирометаллургических процессов являются обжиг, плавка и дистилляция, а гидрометаллургических - выщелачивание и осаждение из растворов. Восстановление металлов в пирометаллургических способах осуществляется, главным образом, при помощи кокса и окиси углерода, получаемой непосредственно в печи при неполном сгорании углерода. Примеси отделяются от основного металла путем их отшлаковывания в виде окислов и солей, главным образом, в виде легкоплавких силикатов.
53.Производство чугуна.
Чугун делают из железосодержащей руды. Агломерация – это спекание породы в куски определенного размера, который наиболее подходит для производства чугуна. Высокая температура обеспечивает слипание частиц шихты, которые образуют куски, но они, в свою очередь, могут легко плавиться. Железная руда предварительно смешивается с углем. Горение угля обеспечивает необходимую температуру для спекания кусков. При производстве чугуна, используют не только агломерат, но и кокс, известь и флюс. Эти материалы смешиваются в заданной известной пропорции, и данная смесь называется доменной шихтой. С помощью специальных подъемников она поднимается на верх доменной печи. Возгорание кокса возможно только при наличии большого количества воздуха, который обогащен кислородом. Воздух подается под большим давлением с помощью специальных фурменных отверстий внизу печи для того, чтобы он проник через пласт шихты, подаваемой сверху. Поток воздуха подогревают до 600-800С, чтобы поддерживать нужную температуру внутри печи. Чугун, который образуется из расплавленной шихты, стекает вниз и с определенной периодичностью (1 раз в 40 мин) и выпускается наружу через специальное отверстие, которое называется летка. После этого с помощью чаш больших емкостей он транспортируется в сталеплавильные цеха.
54.Производство стали.
Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Сырье для производства стали сегодня представлено отработанными стальными изделиями. Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками.
1.Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000°C. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы.
3.Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.
55.Химическая переработка топлива. Коксование каменных углей.
Коксование каменных углей. Процесс коксования угля сопровождается глубокими химическими превращениями его органической массы. В результате образуются твердые и газообразные продукты: кокс, коксовый газ и каменноугольная смола. Прямой коксовый газ, отсасываемый газодувками из камер коксования содержит в г/м3 (при 0ºС и 0,1 МПа): пары каменноугольной смолы (КУС) – 110-130; пары бензольных углеводородов 35-42; нафталин – 10; аммиак 8-14;сероводород и другие сернистые соединения – 6-25;пары воды – 250-450.
Кроме того, в газе содержится: водород, метан, углеводороды этиленового ряда, оксиды углерода, азот. При охлаждении этого газа конденсируется каменноугольная смола и аммиачная вода. Несконденсированными остаются аммиак, бензол, водород, оксиды углерода и другие газы. Пропуская их через раствор серной кислоты, выделяют аммиак в виде сульфата аммония, который используют в качестве азотного удобрения. Бензол поглощают растворителем, а затем отгоняют из раствора. После отделения аммиака и бензола коксовый газ используют как топливо или как химическое сырье. Деструктивное гидрирование - термическое разложение угля под давлением 700 атм. (708,75-105 Па) и при температуре 450-485 °С. В качестве катализаторов могут применяться различные системы на основе молибдена, железа, хрома. При помощи деструктивного гидрирования можно практически полностью перевести органическую массу угля в газообразные и жидкие продукты, используемые как моторное топливо. Газификация процесс связаный с превращением органической части низших сортов топлива в смесь газов (генераторный газ) с помощью газифицирующих агентов . Неполное сгорание протекает при высоких температурах в специальных аппаратах - газогенераторах. В результате окислительных и восстановительных реакций из органической массы углей образуется главным образом синтез-газ (СО+Н2). Он обладает высокой калорийностью и является ценным сырьем для органического синтеза.