Файл: Конспект лекций по предмету ПМ. 01 Разработка модулей программного обеспечения для компьютерных систем.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.01.2024
Просмотров: 207
Скачиваний: 13
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Метод нисходящей разработки.
Сначала строится модульная структура программы в виде дерева. Затем поочередно программируются модули программы, начиная с модуля самого верхнего уровня (головного), переходя к программированию какого-либо другого модуля только в том случае, если уже запрограммирован модуль, который к нему обращается. После того, как все модули программы запрограммированы, производится их поочередное тестирование и отладка в таком же (нисходящем) порядке.
Положительные стороны
-
При таком порядке разработки программы вся необходимая глобальная информация формируется своевременно, т.е. ликвидируется весьма неприятный источник просчетов при программировании модулей. -
Существенно облегчается и тестирование модулей, производимое при нисходящем тестировании программы. Первым тестируется головной модуль программы, который представляет всю тестируемую программу и поэтому тестируется при "естественном" состоянии информационной среды, при котором начинает выполняться эта программа. При этом все модули, к которым может обращаться головной, заменяются на их имитаторы. Имитатор модуля - простой программный фрагмент, сигнализирующий, о самом факте обращения к имитируемому модулю с необходимой для правильной работы программы обработкой значений его входных параметров и с выдачей, если это необходимо, заранее запасенного подходящего результата. После завершения тестирования и отладки головного и любого последующего модуля производится переход к тестированию одного из модулей, которые в данный момент представлены имитаторами, если таковые имеются. Для этого имитатор выбранного для тестирования модуля заменяется на сам этот модуль и добавляются имитаторы тех модулей, к которым может обращаться выбранный для тестирования модуль. При этом каждый такой модуль будет тестироваться при "естественных" состояниях информационной среды, возникающих к моменту обращения к этому модулю при выполнении тестируемой программы. Таким образом большой объем "отладочного" программирования заменяется программированием достаточно простых имитаторов используемых в программе модулей. Кроме того, имитаторы удобно использовать для подыгрывания процессу подбора тестов путем задания нужных результатов, выдаваемых имитаторами.
Рассмотренные методы называются классическими. В них модульная древовидная структура программы должна разрабатываться до начала программирования модулей. Однако такой подход вызывает ряд возражений: маловероятно, чтобы до программирования модулей можно было разработать структуру программы достаточно точно и содержательно.
При конструктивном и архитектурном подходах к разработке программ модульная структура формируется в процессе программирования модулей.
Конструктивный подход (Модификация нисходящей разработки)
Модульная древовидная структура программы формируется в процессе программирования модуля. Сначала программируется головной модуль, исходя из спецификации программы в целом, причем спецификация программы является одновременно и спецификацией ее головного модуля, так как последний полностью берет на себя ответственность за выполнение функций программы. В процессе программирования головного модуля, в случае, если эта программа достаточно большая, выделяются внутренние функции, в терминах которых программируется головной модуль. Это означает, что для каждой выделяемой функции создается спецификация реализующего ее фрагмента программы, который в дальнейшем может быть представлен некоторым поддеревом модулей. Важно заметить, что здесь также ответственность за выполнение выделенной функции берет головной (может быть, и единственный) модуль этого поддерева, так что спецификация выделенной функции является одновременно и спецификацией головного модуля этого поддерева. В головном модуле программы для обращения к выделенной функции строится обращение к головному модулю указанного поддерева в соответствии с созданной его спецификацией. Таким образом, на первом шаге разработки программы (при программировании ее головного модуля) формируется верхняя начальная часть дерева, например, такая, которая показана на рис. 7.1.
Первый шаг формирования модульной структуры программы при конструктивном подходе.
Аналогичные действия производятся при программировании любого другого модуля, который выбирается из текущего состояния дерева программы из числа специфицированных, но пока еще не запрограммированных модулей. В результате этого производится очередное доформирование дерева программы, например, такое, которое показано на рис. 7.2.
Архитектурный подход (модификация восходящей разработки)
Модульная структура программы формируется в процессе программирования модуля. Но при этом ставится другая цель разработки: повышение уровня используемого языка программирования, а не разработка конкретной программы. Это означает, что для заданной предметной области выделяются типичные функции, каждая из которых может использоваться при решении разных задач в этой области, и специфицируются, а затем и программируются отдельные программные модули, выполняющие эти функции. Так как процесс выделения таких функций связан с накоплением и обобщением опыта решения задач в заданной предметной области, то обычно сначала выделяются и реализуются отдельными модулями более простые функции, а затем постепенно появляются модули, использующие ранее выделенные функции. Такой набор модулей создается в расчете на то, что при разработке той или иной программы заданной предметной области в рамках конструктивного подхода могут оказаться приемлемыми некоторые из этих модулей.
Это позволяет сократить трудозатраты на разработку конкретной программы путем подключения к ней заранее заготовленных и проверенных на практике модульных структур нижнего уровня. Так как такие структуры могут многократно использоваться в разных конкретных программах, то архитектурный подход может рассматриваться как путь борьбы с дублированием в программировании. В связи с этим программные модули, создаваемые в рамках архитектурного подхода, обычно параметризуются для того, чтобы усилить применимость таких модулей путем настройки их на параметры.
Второй шаг формирования модульной структуры программы при конструктивном подходе.
Метод нисходящей реализации. Каждый запрограммированный модуль начинают сразу же тестировать до перехода к программированию другого модуля.
Разработка программного модуля. Структурное программирование.
Порядок разработки программного модуля.
-
изучение и проверка спецификации модуля, выбор языка программирования;
(т.е. разработчик изучая спецификацию выясняет понятна она ему или нет, достаточно ли полно она описывает модуль; затем он выбирает язык программирования, на котором будет написан модуль, хотя язык программирования может быть единым для всего ПС)
-
выбор алгоритма и структуры данных (здесь выясняется не известны ли какие-либо алгоритмы для решения поставленной задачи и если есть, то воспользоваться им) -
программирование модуля (написание кода программы) -
шлифовка текста модуля (редактирование имеющихся комментариев, добавление дополнительных комментариев, для того чтобы обеспечить требуемое качество) -
проверка модуля (проверяется логика работы модуля, отлаживается его работа)
Применяются следующие методы контроля программного модуля:
-
статическая проверка текста модуля (текст прочитывается с начала до конца с целью найти ошибки в модуле. Обычно для такой проверки привлекают, кроме разработчика модуля, еще одного или даже нескольких программистов. Рекомендуется ошибки, обнаруживаемые при такой проверке исправлять не сразу, а по завершению чтения текста модуля) -
сквозное прослеживание (вручную прокручивается выполнение модуля (оператор за оператором в той последовательности, какая вытекает из логики работы модуля) на некотором наборе тестов)
-
компиляция модуля.
Структурное программирование.
На сегодняшний день самой популярной методикой программирования является структурное программирование «сверху-вниз».
Структурное программирование – это процесс пошагового разбиения алгоритма на все более мелкие части, с целью получить такие элементы, для которых можно легко написать конкретные предписания.
Два принципа структурного программирования:
-
последовательная детализация «сверху – вниз» -
ограниченность базового набора структур для построения алгоритмов любой степени сложности
Требования структурного программирования:
-
программа должна составлятся мелкими шагами, таким образом сложная задача разбивается на достаточно простые, легко воспринимаемые части -
логика программы должна опираться на минимальное число достаточно базовых управляющих структур (линейные, разветвляющиеся и циклические структуры)
Основные свойства и достоинства структурного программирования:
-
уменьшение сложности программ -
возможность демонстрации правильности программ на различных этапах решения задачи -
наглядность программ -
простота модификации (внесения изменения) программ.
Современные средства программирования должны обеспечивать максимальную защиту от возможных ошибок разработчика.
Тут можно провести аналогию с развитием методов управления автотранспортом. Сначала безопасность обеспечивалась за счет разработки правил движения. Затем появилась система разметки дорог и регулирования перекрестков. И, наконец, стали строиться транспортные развязки, которые в принципе предотвращают пересечение потоков машин и пешеходов. Впрочем, используемые средства должны определяться характером решаемой задачи: для проселочной дороги вполне достаточно соблюдения простого правила - "смотри под ноги и по сторонам".
Основная идея структурного программирования: программа должна представлять собой множество блоков, объединенных в виде иерархической древовидной структуры, каждый из которых имеет один вход и один выход.
Любую программу можно построить, используя лишь три основных типа блоков:
-
функциональный блок - отдельный линейный оператор или их последовательность; -
блок разветвления - If <условие> Then...Else. -
обобщенный цикл - конструкция типа While <условие> Do <операторы> (проверка в начале цикла!);
Существенно, что каждая из этих конструкций имеет по управлению только один вход и один выход. Тем самым, и обобщенный оператор имеет только один вход и один выход.
Структурное программирование иногда называют еще "программированием без GO TO". Однако дело здесь не в операторе GO TO, а в его беспорядочном использовании. Очень часто при воплощении структурного программирования на некоторых языках программирования оператор перехода (GO TO) используется для реализации структурных конструкций, не снижая основных достоинств структурного программирования. Запутывают программу как раз "неструктурные" операторы перехода, особенно переход на оператор, расположенный в тексте модуля выше (раньше) выполняемого оператора перехода. Тем не менее, попытка избежать оператора перехода в некоторых простых случаях может привести к слишком громоздким структурированным программам, что не улучшает их ясность и содержит опасность появления в тексте модуля дополнительных ошибок. Поэтому можно рекомендовать избегать употребления оператора перехода всюду, где это возможно, но не ценой ясности программы.
К полезным случаям использования оператора перехода можно отнести выход из цикла или процедуры по особому условию, "досрочно" прекращающего работу данного цикла или данной процедуры, т.е. завершающего работу некоторой структурной единицы (обобщенного оператора) и тем самым лишь локально нарушающего структурированность программы. Большие трудности (и усложнение структуры) вызывает структурная реализация реакции на возникающие исключительные (часто ошибочные) ситуации, так как при этом требуется не только осуществить досрочный выход из структурной единицы, но и произвести необходимую обработку этой ситуации (например, выдачу подходящей диагностической информации). Обработчик исключительной ситуации может находиться на любом уровне структуры программы, а обращение к нему может производиться с разных нижних уровней. Вполне приемлемой с технологической точки зрения является следующая "неструктурная" реализация реакции на исключительные ситуации. Обработчики исключительных ситуаций помещаются в конце той или иной структурной единицы и каждый такой обработчик программируется таким образом, что после окончания своей работы производит выход из той структурной единицы, в конце которой он помещен. Обращение к такому обработчику производится оператором перехода из данной структурной единицы (включая любую вложенную в нее структурную единицу).